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Abstract. Concentrations of 7Be and 21øpb in 2 years of weekly high-volume aerosol samples 
collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We 
observed a broad winter peak in 2•øpb concentration and a spring peak in 7Be. These peaks were 
similar in magnitude and duration to previously reported results for a number of stations in the 
Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) 
were well correlated with those of 7Be; the atom ratio •øBe/7Be was nearly constant at 2.2 
throughout the year. This relatively high value of XøBe/7Be indicates that the stratosphere must 
constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. 
A simple mixing model based on the small seasonal variations of •øBe/7Be indicates an 
approximately twofold increase of stratospheric influence in the free troposphere in late summer. 
The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical 
mixing in rather than stratospheric injections into the troposphere. We have merged the results of 
the Be-based mixing model with weekly 03 soundings to assess Arctic stratospheric impact on 
the surface 03 budget at Alert. The resulting estimates indicate that stratospheric inputs can 
account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of 
the year. These estimates are most uncertain during the winter. The combination of Be isotopic 
measurements and 03 vertical profiles could allow quantification of the contributions of 03 from 
the Arctic stratosphere and lower latitude regions to the 03 budget in the Arctic troposphere. 
Although at present the lack of a quantitative understanding of the temporal variation of 03 
lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples 
of the power of this approach are given. 

Introduction 

Th& chemistry and dynamics of the Arctic atmosphere have 
received a great deal of attention following the discovery of 
Arctic haze about 15 years ago [Barrie, 1986]. Arctic haze, 
which occurs every year in the winter-spring season, consists of 
visible haze layers associated with high levels of pollution- 
derived aerosols. In an effort to understand the origin of this 
annual pollution event, a number of surface-based monitoring 
stations were established and a series of airborne measurement 

campaigns have been conducted. The winter atmosphere has 
been characterized through missions flown in late winter 1983, 
1986, 1989, and 1992 under the auspices of the NOAA Arctic 
Gas and Aerosol Sampling Program (AGASP). Summer 
conditions have been studied as part of NASA's Global 
Tropospheric Experiment, which mounted two combined airborne 
and ground-based campaigns, Arctic Boundary Layer Experiment 
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(ABLE) 3A in 1988 and ABLE 3B in 1990. Recently, the' 
potential for large-scale, anthropogenically induced depletion of 
stratospheric ozone has been investigated in two NASA Airborne 
Arctic Stratosphere Experiment campaigns: January-February 
1989 and through the winter of 1991-1992. 

These studies have shown that Arctic haze is a basin-wide 

pollution event which is caused by low-level transport from 
midlatitudes to the Arctic. The reduced efficiency of pollution 
removal processes during the Arctic winter and spring and a 
maximum in meridional transport into the Arctic basin during the 
same season allow pollution concentrations in the lower 
troposphere to grow quite high (see the following special issues 
on Arctic haze: Geophysical Research Letters, 11 (5) 1984; 
Atmospheric Environment, 19 (12) 1985; and Journal of 
Atmospheric Chemistry, 9 1989). In the summertime, 
measurements at the surface indicate very "clean" air in the Arctic 
boundary layer. In contrast, airborne measurements between 2 
and 6 km reveal enhanced concentrations of several trace species, 
with stratospherically derived air apparently an important source 
of 03, NOy, ?Be, and perhaps SO42' and 2•øpb in the Arctic 
troposphere [Browell et al., 1992, 1994; Dibb et al., 1992a; 
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Gregory et al., 1992; Sandholm et al., 1992; Talbot et al., 1992; 
Wofsy et al., 1992; Anderson et al., 1994; Bachmeier et al., 1994]. 
It is somewhat surprising that similar stratospheric influences on 
the free troposphere have not been shown to be significant during 
the winter-spring season as well, since measurements and 
modeling clearly show pronounced stratospheric subsidence in 
the winter Arctic vortex [e.g., Schoeberl et al., 1992; Toon et al., 
1992; Tuck et al., 1992]. Episodic intrusions of stratospheric air 
into the winter Arctic troposphere have been documented [e.g., 
Shapiro et al., 1984; Raatz et al., 1985] and it was suggested that 
the 03 transported downward in such events could constitute an 
important term in the winter tropospheric 0 3 budget [Oltmans et 
al., 1989]. 

Here we use time series of near-surface concentrations of three 

natural radionuclides at Alert, Canada (82.5øN, 62.3øW), to 
examine the origins of tropospheric air in the Arctic Basin. 
Temporal variations of 7Be and 21øpb from late September, 1990 
through September 1992 follow those previously reported from 
all other low-altitude Arctic sites where these two radionuclides 

have been measured [Feely et al., 1988; Larsen and Sanderson, 
1990]. We thus feel that Alert is representative of a large region 
of the western Arctic. The greatly different sources of these two 
radionuclides (decay of 222Rn emitted from continental surfaces 
for 2•øpb and cosmic-ray-induced spallation in the upper 
troposphere and stratosphere for 7Be) suggest that these 
radionuclides might serve as tracers of continental versus upper 
tropospheric or stratospheric air masses, respectively. The use of 
•øBe in atmospheric studies is a recent development, as its 
measurement at low concentrations was made possible only by 
recent improvements in accelerator mass spectrometric 
techniques. Raisbeck et al. [ 1981] demonstrated the potential of 
•øBe in such studies but analyzed only a small number of aerosol 
samples. Brown et al. [1989] and Monaghan et al. [1986] 
extended this work to investigate global properties of the 
atmosphere through analysis of precipitation samples. Wahlen 
and coworkers (M. Wahlen, personal communication, 1990) have 
measured aerosol filters collected on high-altitude flights. 

A simple model based on the pioneering work of Raisbeck et 
al. [ 1981] is used to quantify the temporal pattern of stratospheric 
influence on the concentrations of the Be isotopes in surface air at 
Alert. Results from this Be-based model are then used to estimate 

the impact of stratospherically derived air on the surface ozone 
budget throughout the year. 

Methods 

Sampling 

Weekly high-volume aerosol samples from the routine 
monitoring program at Alert are collected on 20 x 25 cm 2 
Whatman 41 filters. These filters have been shown to be less 

than 100% efficient for the submicron-size aerosols can3,ing 
21øPb and both Be isotopes [Lockhart et al. 1963; Turekian et al., 
1989]. Concentrations reported later in this paper may thus be 
10-20% low, but ratios will not be affected. The site, 
experimental protocols, and other routine measurements have 
been described previously [Barrie and Hoff, 1985]. The 
subsamples for radionuclide determinations (1/8 of each filter) 
contained the particulates from 1600-2000 m 3 STP of air. At 
intervals of 4 weeks, the filters (plus a monthly blank) were 
mailed to Toronto for subsampling and archiving, and 
radionuclide aliquots were forwarded to the University of New 
Hampshire for determination of 7Be and 21øPb concentrations. 

7Be and 2•øPb Analyses 

Upon receipt at the University of New Hampshire, filter strips 
were pressed into 4-mL polyethylene vials for nondestructive 
gamma spectrometry. The counting system consists of a 
germanium well detector coupled to a 4-kilobyte computer- 
interfaced multichannel analyzer. Lead 210 and ?Be activities 
were determined from the areas of the 46.5- and 477.6-keV 

photopeaks, respectively. Calibration of the counting system was 
accomplished by frequent recounting of a blank filter strip spiked 
with certified 21øpb and 7Be standard solution that had been 

similarly pressed into a vial. Beryllium 7 activities were 
corrected (to the midpoint of each sampling interval) for decay 
between sampling and counting. This time period was generally 
near 45 days for the oldest filter in each group but occasionally 
approached 60 days. Despite this interval between sampling and 
analysis, 7Be activities were high enough in all samples that 
uncertainty due to counting statistics was <5% for 10-hour 
counting times. 

løBe Analyses 

After gamma counting, the filters were sent to Lawrence 
Livermore National Laboratory (LLNL), where they were 
leached, in the presence of Be carrier, with 50% HNO3. Several 
releaching experiments demonstrated that the leaches were >95% 
effective. The leached Be was purified using ion-exchange 
chromatography, and BeO was prepared by igniting the purified 
ion-exchange fraction. Beryllium 10 concentrations were 
determined using the LLNL Center for Accelerator Mass 
spectrometry (CAMS) accelerator mass spectrometer [Davis et 
al., 1990]. In addition to the samples from Alert, six samples 
collected in the lower stratosphere during AGASP 3 [Dibb et al., 
1992a] and eight samples collected in the upper troposphere and 
lower stratosphere over the Pacific ocean during the Pacific 
Exploratory Mission (PEM) WEST A (J.E. Dibb, R.W. Talbot, 
K.I. Klemm, G.L. Gregory, H.B. Singh, J.D. Bradshaw, and S.T. 
Sandholm, Asian influences over the western North Pacific 

during the fall season: Inferences from lead 210, soluble ionic 
species, and ozone, submitted to Journal of Geophysical 
Research, 1994) (hereinafter referred to as Dibb et al., submitted 
manuscript, 1994) were analyzed for løBe as part of this 
investigation. The overall uncertainty in the løBe measurements 
for the Alert samples is approximately 5%; for the very small 
volumes of air sampled during the airborne campaigns, the 
uncertainty can reach 100%. Additional uncertainty in the 
determination of air volumes sampled will have an impact on the 
absolute concentrations of both Be isotopes but not their ratio. 

Results 

Beryllium 7 and 21øpb concentrations in surface-level air at 
Alert experienced large seasonal variations that were quite 
similar in the 2 years we studied (Figure 1). Lead 210 
concentrations during the June-September minimum were tenfold 
lower than during the broad maximum, which occurred from 
November through March. Peak 21øpb concentrations occurred in 
January and February both years, and were more than 15 times 
higher than concentrations in summer. Beryllium 7 
concentrations were also lowest during the June-September 
period, with a recovery beginning in October that closely 
paralleled that of 21øpb. However, peak ?Be concentrations 
occurred a bit later in the year than peak 21øpb concentrations, 
that is, in March-April 1991, while in 1992 the annual ?Be peak 
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Figure 1. Concentrations of 7Be and 21øPb in surface-level air at Alert from September 25, 1990 to 
September 28, 1992. Sampling interval was weekly, with sampled volumes ranging from 1600 to 2000 m 3 
STP. Average uncertainties are 3% for ?Be and 6% for 

was lower and broader but persisted through April, when 21øpb 
levels were steadily declining. 

Beryllium 10 concentrations at Alert during the first year of 
sampling closely followed those of ?Be (Figure 2). Our measured 
løBe concentrations, a few times 104 atoms m -3 STP, compare 
well with the few other tropospheric measurements available 
[Raisbeck et al., 1981; S. Harder, personal communication, 
1994]. The løBeflBe ratio measured at Alert averaged 2.2 +_ 0.3 
but varied seasonally, reaching maximum values near 3.0 in July- 
August, with fall-winter minima closer to 2.0. Concentrations of 
løBe but not ?Be in the atmosphere can be locally enhanced by 
resuspension of surface soils. We estimated the potential 
contribution of resuspended løBe at Alert through the year from 
A1 concentrations measured by neutron activation analysis of 
separate strips of each weekly filter, assuming that Al constitutes 
7% (by mass) of dust [Mason, 1966; Bowen, 1979] and that dust 
contains 5 x l0 s atoms løBe g-l [Pavich et al., 1984]. The ratio 
(estimated resuspended løBe/measured løBe) was generally << 
0.05 (mean, 0.04 + 0.08, median, 0.01). Eight samples with 
values of >0.05, including four ranging from 0.25 to 0.36, elew•te 
the mean and cause the large standard deviation. All of the 
samples in which the estimated contribution of resuspended løBe 
exceeded 25% were collected in September and October, when 
the løBeflBe ratio was relatively low (Figure 2). This observation 
suggests that resuspended løBe is even less important than we 
have estimated, so no corrections for resuspended løBe were 
applied to the present data. 

Beryllium concentrations in high-altitude Arctic air and lower 
latitude air are presented in Table 1. Concentrations of both Be 
isotopes at the base of the Arctic stratosphere during AGASP 3 
were threefold lower than those at 10.7 km in 1978, but the 
average •øBeflBe ratio (5.1 g 1.0) was nearly the same (Table 1). 
Concentrations increase markedly with altitude in the Arctic 
stratosphere (at least up to 19 km), particularly for ?Be. The 
løBeflBe ratio decreases significantly with heigh[ above the 

tropopause at high northern latitudes (Table 1). Raisbeck et al. 
[ 1981] suggested that the apparent •øBeflBe gradient in the lower 
stratosphere was due to descent (and concurrent mixing) from 
higher-production (higher altitude) regions at rates slow enough 
for decay to significantly decrease ?Be concentrations. If this 
conceptual model is valid, detailed løBeflBe profiles could yield 
refined understanding of stratospheric stratification and mixing. 
Our new data for the Arctic cover only a very small altitude 
region just above the tropopause, but they do suggest that the 
high løBeflBe ratio in the earlier sample from 10.7 km was not 
anomalous. 

Beryllium isotopic data are even more sparse for high altitude 
air from lower latitudes (Table 1). The PEM WEST A samples 
were all collected on transit flights, so only a single altitude was 
sampled in each geographic region. The first three samples 
collected in September were clearly from the lower stratosphere. 
The fourth September sample and all samples from October were 
from upper tropospheric air with stratospheric influence (E. V. 
Browell et al., Influence of stratospheric intrusions on chemical 
composition of the troposphere over the western Pacific during 
PEM WEST, submitted to Journal of Geophysical Research, 
1994). The tropical sample from 16.8 km is felt to be 
stratospheric but may include tropospheric inputs from Hadley 
circulation [Raisbeck et al., 1981]. This limited data set cannot 
be considered definitive, but it does suggest that the high 
løBe/?Be ratios found near the Arctic tropopause may be 
restricted to high latitudes. Such a finding would be consistent 
with poleward transport and increasing age of stratospheric air 
masses. 

Discussion 

The seasonal variations of ?Be and 9'løPb concentrations at 

Alert are strikingly similar to previously reported observations at 
a number of sims in the Arctic Basin, particularly Barrow, Alaska 
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Figure 2. (top) Beryllium 10 concentrations in samples collected the first year of this study compared to 7Be 
concentrations; (bottom) løBe/7Be ratios in the same samples. Average uncertainties in løBe measurement 
are 5% We point out that this data set differs slightly from that presented earlier [Dibb et al., 1992c]. 
Analysis of new aliquots from four filters that we originally reported had anomalously highflow løBe/7Be 
ratios has confirmed that accelerator mass spectrometry targets had been mislabeled (i.e., the løBe values 
were not registered to the correct samples). We offer apologies for any confusion. 

(Table 2). Rahn and McCaffrey [1980] proposed a simple 
transport and aging model that qualitatively explained the 
elevated levels of 21øPb and the anthropogenic component of 
Arctic haze reaching Barrow in late winter-spring. Very briefly, 
this model invokes relatively frequent meridional surges of 
midlatitude tropospheric air (predominantly originating over 
Europe) into the Arctic during the winter. Low scavenging rates 
in the Arctic Basin due to reduced precipitation in winter result in 
elevated concentrations of 21øPb and SO4 •' from decay of ::ZRn 
and oxidation of SO 2, respectively, which are transpoRed from 
industrialized continental source regions by the meridional 
surges. Modeling of 'Z•Rn and 21øPb tropospheric distributions 
using a three-dimensional chemical tracer model based on 
climatologic meteorology from the NASA Goddard Institute for 
Space Sciences general circulation model also reproduces the 
very high :løPb concentrations seen at Barrow but not at Alert 
during winter [Balkanski et al., 1993]. In the Balkanski et al. 
model, the plume of elevated :løPb concentrations originates over 
Siberia rather than over Europe, but both modeling efforts agree 
that winter-spring elevated :løPb concentrations in the western 
Arctic Basin are the result of long-range lower tropospheric 
transport from Eurasia. 

The source of seasonal 7Be variations is not, a priori, so 
obvious. At both Alert and Barrow, the 7Be and 21øPb variations 
are broadly similar (Table 2). As we have noted, at Alert the 
annual 7Be peak in March-April clearly follows the :løPb peak in 
January-February. This distinction is not so apparent at Barrow; 
7Be does peak in March-April, but :løPb is roughly constant from 
December through March or April. 

It is tempting to ascribe the spring peak in 7Be at all of the 
Arctic sites (Table 2) to increased stratosphere-troposphere 
exchange and/or increased vertical (downward) mixing of upper 
tropospheric air. However, 7Be concentrations begin increasing 
in October or November with :løPb, and it seems reasonably well 
established that the :løPb increase reflects tropospheric transport 
and lower removal rates. Feely et al. [ 1988] have examined 7Be 
aerosol data from a large network of sites and noted a 
pronounced decrease in concentration along a transect from the 
continental United States into the Arctic. This led them to 

suggest that most 7Be enters the Arctic troposphere by horizontal 
advection from lower latitudes. However, the recent research 
suggesting a strong stratospheric influence on the chemistry of 
the Arctic troposphere, noted above, suggests that this hypothesis 
is less than completely satisfactory. The concurrent løBe and 7Be 
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Table 1. Beryllium 10 and 7Be Concentrations in 
Stratospheric Air 

Concentration, 

Latitude, Altitude, 104 atoms m -3 STP 
ON 

July 1978 
July 1978 
July 1978 
July 1978 

km løBe 7Be •øBe/7Be 
Arctic Region 

65 19.2 1290+210 533+112 2.4 
65 16.8 1190+155 502+55 2.4 
65 13.7 791+126 316+_57 2.5 
65 10.7 663+113 117+13 5.7 

March 16, 1989 68-72 8.1 55+5 14+1 4.0 
March 18, 1989 71-74 8.2 86+1 18+1 4.9 
March 21, 1989 68-75 8.9 132+1 25+1 5.2 
March 23, 1989 71-72 8.3 282+5 68+_2 4.1 
March 29, 1989 68-82 8.1 265+1 38+1 6.9 
March 30, 1989 68-75 9.1 176+7 33+2 5.4 

Lower Latitudes 

September 16, 1991 56 10.7 131+26 96+10 1.4 
September 17, 1991 47 10.7 210+_5 120_+4 1.8 
September 18, 1991 41 10.7 100+9 65_+4 1.5 
September 18, 1991 38 10.8 5+5 9+1 0.6 
October 21, 1991 36 10.7 14+5 6+1 2.2 
October 21, 1991 32 9.8 33+5 35+_3 0.9 
October 21,1991 30 9.8 18+9 28+_3 0.6 
October 21, 1991 30 9.8 21+7 23+2 0.9 

July, 1978 9 16.8 181+_40 97+18 1.9 

All 1991 samples are from PEM WEST A (Dibb et al., 
submitted manuscript, 1994), all 1989 samples are from AGASP 
3 [Dibb et al., 1992a], and all 1978 samples are fromRaisbeck et 
al. [1981]. 

measurements on aerosols collected at Alert provide new insight 
into this question. 

General Model for Be Isotopes in the Arctic Troposphere 

Following Raisbeck et al. [1981], we suggest that the 
tropospheric concentrations of the Be isotopes are described by 

dC10/dt = -•,r C10 + (Q10 + P10) (1) 

dC7/dt = -(3.r + 3.7)C7 + (Q7 + P7) (2) 

where 3. r is removal by scavenging and deposition (assumed to 
be first order and the same for both isotopes), 3.7 is the decay 
constant of 7Be, Q is Be injected from the stratosphere, and P is 
Be produced in the troposphere. For convenience we define 

Q10 = SrQ7 (3) 

PlO = PrP7 (4) 

where Sr is the •øBe/7Be ratio in the stratospheric source, and Pr 
is the •øBe/7Be production ratio. With the initial condition, C10 = 
C7 = 0 at t = 0, (1) and (2) yield the general solution for •øBe/7Be 
given by Raisbeck et al. [1981 ]: 

C10 (PrP7 + SrQ7) (• + 3.7) (1- e -zn) 
-R- 

C7 (P7 + Q7) 3,r (1 -e -(x'+x7)•) 
(5) 

Rearranging (5) gives the more useful form: 

Q7 R(•/(• + 3, 7)) (1- e -(x' + x7)t )_ Pr(1-e -•t) 

P7 Sr(1-e-x•t) - R(•/(Xr + 3.7)) (1-e -(x' + •.7•) 
(6) 

We assume that the value of R measured at Alert is 

representative of the free troposphere (since removal processes 
do not fractionate the two Be isotopes). As a first approximation, 
the small variation of R about its mean of 2.2 (Figure 2) suggests 
that the tropospheric budgets of both Be isotopes were nearly in 
equilibrium throughout the year of our measurements. The 
steady state value of Q7/P7 can be evaluated by letting t go to 
infinity in (6), but we also require estimates of Sr, Pr, and hr. 

Air from just above the tropopause appears to be the most 
likely source of stratospheric injections into the troposphere. The 
polar front tends to separate the Arctic troposphere from lower 
latitudes, suggesting that injections of Arctic stratospheric air into 
the Arctic troposphere will dominate over meridional advection 
of stratospheric air injected into the troposphere south of the 
polar front. Thus the mean value, 5, of the •øBe/7Be ratio in the 
six AGASP filters (Table 1), provides an estimate for St. 

Atmospheric løBe and 7Be production rates are difficult to 
estimate, because most of the measured cross sections are for 

proton-induced reactions, while production in the atmosphere is 
dominated by neutron-induced reactions. Measurements in the 
beam stop at LAMPF gave a •øBe/7Be production ratio induced 
by neutrons on oxygen of 0.6 for a particle spectrum similar to 

Table 2. Monthly Average Concentrations of 7Be and 
2øPb in the Arctic Basin 

Averal•e Concentration, fCi m '3 STP a 
Alert Barrow b'• Nord b Thule b 

Beryllium 7 
Jan. 61 63 82 125 
Feb. 67 64 78 130 
March 90 77 98 153 

April 92 80 110 126 
May 51 57 64 87 
June 26 27 44 57 

July 25 26 42 58 
Aug. 19 18 35 51 
Sept. 34 26 48 59 
Oct. 38 39 66 84 

Nov. 56 57 83 100 
Dec. 60 49 139 110 

Lead 210 

Jan. 36.1 22.3 

Feb. 32.8 20.6 

March 24.7 23.2 

April 18.7 19.6 
May 8.1 8.8 
June 1.5 2.5 

July 2.0 2.2 
Aug. 1.8 1.6 
Sept. 3.7 2.8 
Oct. 6.8 6.4 

Nov. 19.1 13.4 

Dec. 25.4 21.2 

'1 fCi =245.9 atoms of 7Be or 37,569 atoms of 2•øPb. 
bData are from Feely et al. [1988]. 
'Additional, more recent data are from Larsen and Sanderson 
[19901. 



12,860 DIBB ET AL: STRATOSPI-IERIC INPUT TO ARCTIC TROPOSPHERE 

that in the atmosphere [Klein et al., 1988]. Data for proton 
reactions on nitrogen gave •øBe/7Be production ratios of 0.1-0.18, 
depending on the energy [Raisbeck and Yiou, 1974]. There are 
no published neutron cross sections for nitrogen, but recent 
measurements of cross sections for •4N + n suggest that the 
aøBe/?Be production ratio may be as high as 1.2-1.3 (M. 
Imamura, personal communication, 1993). We believe that a 
aøBeftBe production ratio as high as 1.2 is difficult to reconcile 
with measured values of aøBef•Be in the environment that are less 
than 1.2, since this ratio can increase with time only through 
decay of ?Be and/or resuspension of aøBe into the atmosphere. 
We measured aøBe/qBe ratios of <1.0 in four of eight samples 
collected in the upper troposphere/lower stratosphere over the 
North Pacific in 1991, albeit with large uncertainties (Table 1). 
In addition, Brown et al. [ 1989] found aøBe/7Be ratios of <1.2 in 
about 20% of 68 precipitation samples collected in Illinois, 
including three samples for which the ratio was <0.7. We use a 
aøBe/?Be atmospheric production ratio of 0.6 + 0.1 in the 
calculations in this paper. 

Rather than assuming a value for •,r, we calculate steady state 
values of Q7/P7 as a function of aerosol mean lifetime Tr (Tr - 
1/'A,r). As the aerosol lifetime increases, decay of ?Be becomes 
significant and causes R to increase. However, if aerosol 
lifetimes are less than about 200 days, stratospheric contributions 
are required to maintain R at 2.2 (Figures 3a and 3b). Previous 
estimates of ?Be residence time in the troposphere converge on 
30-40 days [Shapiro and Forbes-Resha, 1976, and references 
therein], suggesting that a 200-day lifetime is implausibly long. 
It thus appears that frequent injections of stratospheric air are 
required to maintain the aøBeftBe near 2.2 in the troposphere. 
We note that the aerosol lifetime required to maintain the 
•øBef•Be ratio at 2.2 when Q = 0 decreases if Pr increases; for Pr 
= 0.8, 1.0, and 1.2, the necessary lifetimes would be 135, 92, and 
64 days, respectively. Even for Pr = 1.2, these aerosol lifetimes 
seem too long. However, it is apparent that if Pr is shown to be 
greater than 0.6, the stratospheric influence estimated in all 
calculations presented below will have to be reduced. 

Application of the Model to the Alert Results 

If the residence time of Be-bearing aerosol in the Arctic 
troposphere were between 30 and 40 days and if R were truly 
constant at 2.2, then Q7/P7 would fall in the range 0.24-0.29 
(Figure 3). This is in very good agreement with the global 
average of 0.26 calculated from a three-dimensional global 
climate model [Brost et al., 1991]. However, the measured 
values of R at Alert showed an apparent seasonal pattern, 
increasing from about 2.0 in fall and winter to about 3.0 in July 
and August (Figure 2). We have averaged the observations from 
Alert by month to estimate changes in stratospheric injections of 
Be through the year. For constant aerosol lifetime, the higher R 
values in midsummer relative to those in winter indicate a 

twofold increase in the stratospheric fraction of tropospheric ?Be 
(Figure 4a). 

The earlier discussion of 2aøpb concentrations and the Arctic 

haze phenomenon indicates that there is also pronounced 
seasonality of aerosol scavenging in the Arctic troposphere, with 
maximum lifetimes in winter and minima in summer. Inclusion 

of an idealized seasonal pattern of aerosol lifetime consistent 
with this scenario accentuates the winter to summer increase in 

the stratospheric influence on tropospheric ?Be (Figure 4b). 
These calculations all use the equilibrium form of (6), since 

we were uncertain how to prescribe a time history of complete Be 
washout which would allow including the time-dependent terms. 

However, equilibrium values of Q7/P7 are approached rapidly 
from higher values, suggesting that our approach yields 
conservative estimates of stratospheric influence. Regardless of 
the details, the higher values of R during midsummer indicate 
increased injections of stratospheric Be into the troposphere 
during the period when surface concentrations of both isotopes 
were at their lowest (Figure 2). Similarly, the spring peak in Be 
concentrations at Alert occurs when the aøBe/7Be ratio suggests 
that stratospheric influence is just beginning to increase from the 
smallest fraction observed during the year (Figures 2 and 4). 
These findings reflect the various factors that determine ?Be 
concentrations at ground level [e.g., Feely et al., 1988; Dibb et 
al., 1992b]. At Alert the spring concentration peak of both Be 
isotopes appears to reflect increased vertical mixing of free 
tropospheric air down to the surface [e.g., Putnins, 1970]. 
During the summer, enhanced aerosol scavenging in the 
pervasive stratus deck over the Arctic basin results in low 
concentrations of aerosol-associated species in the boundary 
layer despite higher concentrations aloft [e.g., Talbot et al., 
19921. 

The concentration of stratospherically derived ?Be reaching 
the surface at Alert can be estimated from 

S7,S = (Q7/(Q7 + P7))C7,s,, (7) 

where the subscript S refers to surface observations. Values of 
Q7/(Q7 + P7) for all three aerosol lifetime scenarios explored in 
Figure 4 were multiplied by monthly average ?Be concentrations. 
A peak in stratospheric ?Be reaching the surface is clearly evident 
in March-April (Figure 5), but this peak largely reflects vertical 
mixing in the troposphere rather than stratospheric injections into 
the troposphere which peak in July-August (Figure 4). It should 
be noted that (7) and the observed ?Be concentrations at Alert 
would predict a spring maximum in stratospheric ?Be at the 
surface even if R was held constant at the mean value of 2.2 

(fixing Q7/P7 in the 0.24-0.29 range). In fact, the relative 
amplitude of the peak would increase, as summertime estimates 
would be even lower than those in Figure 5. 

It should be noted that all of the conclusions regarding 
seasonality of stratospheric injections into the stratosphere and 
stratospheric Be reaching the surface remain valid even if Pr is 
>0.6. The magnitude of stratospheric influence will be reduced 
but not eliminated even if Pr is as high as 1.2 (which we feel is 
probably too high, as outlined above). 

Ozone at Alert and the Impact of Stratospheric Ozone 

The estimated concentrations of stratospheric ?Be at Alert also 
yield preliminary estimates of the volume fraction of 
stratospheric air Fsa at the surface: 

Fsa = S7,s/SS, (8) 

(Figure 5). We assume that the Arctic stratospheric source (SS) 
has a constant ?Be concentration equal to the mean of the six 
AGASP samples (32.7 x 10 • atoms m '3 STP) (Table 1). We have 
multiplied the Be-based estimates of stratospheric air fraction by 
the monthly mean 03 concentration just above the tropopause as 
determined from weekly soundings at Alert and we have compare 
the results of this calculation to observed surface 03 
concentrations (Figure 6). 

The Be-derived estimates of stratospheric air reaching the 
surface will be relevant to 03 only ff the tropospheric lifetime of 
03 injected from the stratosphere is comparable to that of the Be- 
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Figure 3. Values of the ratio of stratospherically injected 7Be/tropospherically produced 7Be (Q7/P7) in the 
troposphere as a function of aerosol residence time at steady state. (a Ratio of ]øBe/7Be in the troposphere 
and stratospheric source held constant while the production ratio is varied; (b effect of varying the ratio in 
the stratospheric source; (c effect of different ratios in the troposphere. 

bearing aerosols. Jacob et al. [1992] calculated a mean 
summertime lifetime of 46 days for 03 in the Arctic troposphere, 
which is similar to the aerosol lifetimes assumed in the 

calculations behind Figures 4 and 5. Our estimates of 
stratospheric 0 3 accounting for 10-15 % of the total at the' 
surface during spring may thus be reasonable (Figure 6). During 
the dark Arctic winter, 03 lifetimes are likely to be longer, 
suggesting that our estimated stratospheric contributions of <1 
part per billion by volume (ppbv) are too low, but the lifetime of 
03 would have to be very long for the Arctic stratospheric 
contribution to exceed the 4 ppbv estimated in the spring. On the 
other hand, meridional transport oœ tropospheric air masses from 

midlatitudes into the Arctic increases in the winter. Larger 
volumes of stratospheric air with low (<5) •øBeflBe ratios (see 
midlatitude samples in Table 1) would be required to maintain R 
at 2.2 (Figure 3b), which might further increase the stratospheric 
fraction of 0 3 at Alert during the winter. However, transfer of 
stratospheric air into the midlatitude troposphere is frequent in 
spring [e.g., Staley, 1982; Dutkiewicz and Husain, 1985] but may 
not be so common in winter when rapid transport into the Arctic 
occurs. 

On an annual basis it appears that 0 3 injected into the Arctic 
troposphere from the overlying stratosphere can account for only 
a small fraction of the total seen at Alert (and this fraction will be 
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Figure 5. Estimates of the concentration of stratospheric 7Be reaching the surface at Alert. The right axis 
converts 7Be concentrations to the volume of stratospheric air required to deliver this much 7Be, assuming a 
constant concentration of 32.7 x 104 atoms m '3 STP in the stratospheric source. 

Two years of sampling at Alert have demonstrated that 7Be 
and 2•øpb concentrations in surface level air follow pronounced 
seasonal patterns that appear to have an impact on a wide region 
of the western Arctic and are quite predictable from year to year. 

even smaller if new information about Pt indicates that the Be- 

based estimates should be revised downward). These estimates 
are in accord with a recent modeling study which found 
stratospheric 0 3 to account for <5% of the zonal mean surface 
0 3 concentration above 70øN throughout the year (Follows and 
Austin, 1992). 

Conclusion 

Figure 4. Values of Q7/P7 calculated from the monthly average value of 1øBeflBe at Alert. (a Aerosol 
lifetime assumed to be constant at 30 or 40 days; Co idealized seasonal pattern of aerosol lifetime assumed. 
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Figure 6. Estimated stratospheric ozone at the surface compared to observations at Alert. The estimates are 
the product of the stratospheric air fraction from Figure 5 and the monthly average 03 concentrations at the 
base of the stratosphere over Alert (shown as the top curve here). Surface and stratospheric 0 3 
concentrations are shown for all soundings, with monthly averages represented by the horizontal bars. 
Estimates of stratospheric are shown as crosses 03 for a 30 day aerosol lifetime, as triangles for a 40 day 
lifetime, and as circles for a variable lifetime. 

Similar findings have long been established for sulfate and other 
pollutants in the context of Arctic haze studies. This may 
indicate that the conclusions regarding stratospheric influence on 
surface air chemistry at Alert are applicable for the same large- 
scale region. 

Concurrent løBe measurements during the first year of this 
study indicate that stratospheric air plays an important role in the 
budgets of beth Be isotopes in the Arctic troposphere throughout 
the year. Small seasonal variations of the •øBeflBe ratio indicate 
a twofold increase in stratospheric injections of the Be isotopes 
into the Arctic troposphere during late summer. The spring peak 
in the concentrations of both Be isotopes at the surface at Alert 
does represent the maximum stratospheric influence on surface 
level air, but it reflects more vigorous downward mixing of free 
tropospheric air rather than increased stratosphere-troposphere 
exchange during this season. 

A simple mixing model based on the Be isotopes also allows 
first-order estimates of the portion of surface 0 3 at Alert that 
could have come from the Arctic stratosphere. The maximum 
stratospheric influence on surface 0 3 is predicted for the spring, 
but it accounts for only 10-15% of the surface concentrations. 
Lack of information about 0 3 lifetime during the Arctic winter 
makes estimates of stratospheric contributions during this season 
highly uncertain, but the estimates are so low that it is unlikely 
that such contributions could equal those in spring. 

At present, the sparse data on spatial and temporal 
distributions of løBeflBe ratios in the stratosphere represent the 
major limitation to quantifying stratosphere-troposphere 
exchange with this isotope pair. Improving this data base would 
also provide insights into vertical and horizontal mixing within 
the stratosphere. We are currently exploring the feasibility of 
quantifying løBe concentrations on some of the aerosol filters 
collected in the stratosphere during various high-altitude 
sampling programs in the 1960s. 
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