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Abstracts

A reduced first order density matrix for the Be ground state is computed from an extensive
configuration interaction (CI) wave function. A sequence of increasingly accurate Ct wave functions @,
converging towards the exact ¥ is used to assess the quality of the results which include approximate
bounds for the overlaps {®,[¥), electron—nuclear coalescence cusp data, Weinhold's overlap between
density matrices, virial ratios, occupation number specira, and some expectation values. The nuclear
magnetic shielding constant and the molar diamagnetic susceptibility are determined with 2.0 and
1.5% of uncertainty, respectively.

Une matrice densité réduite du premier ordre pour I'état fondamental de Be a été calculée d'une
fonction d'onde obtenue par une interaction de configurations {cI) élaborée, Une séquence de
fonctions d'onde de type 1, ®,, qui convergent vers la fonction exacte ¥, est utilisée pour décrire la
qualité des résultats, y inclu des bornes approchées du recouvrement {D,]¥), des données pour les
“cusps” électron—noyau, le recouvrement de Weinhold entre des matrices densité, des rapports viriels,
des spectres de nombres d'occupation et quelgues valeurs moyennes. La constante d*écran
magnétique nucléaire et la susceptibilité diamagnétique molaire sont déterminées avec des incer-
titudes de 2.0 et 1.5 pour cent, respectivement.

Eine reduzierte Dichtematrix erster Ordnung fiir den Grundzustand des Be-Atoms ist von einer
umiassenden Konfigurationswechselwirkungsfunktion (CI) berechnet worden. Eine Reihenfolge von
zunehmend genauen CI-Funktionen ®,, die gegen die exakte Funktion ¥ konvergieren, sind
angewandt worden um die Qualitit der Ergebnisse zu beschreiben. Die folgenden Eigenschaften sind
untersucht worden: angeniherte Schranken fiir die Uberlappungen {®,|%}, Kern-Elektron-“Cusps™,
Weinhold'sche Uberlappungen zwischen Dichtematrizen, Virialverhiltnisse, Spektren fiir Beset-
zungszahlen und einige Erwartungswerte. Die kernmagnetische Abschirmungskonstante und die
molare diamagretische Suszeptibilititsind mit 2.0 und 1.5 v.H.Unsicherheit, bzw. bestimmt worden.

1. Introduction

. A reduced first order density matrix for the Be ground state is computed from
the most accurate [1] configuration interaction (c1) wave function presently
available. Details of the method for the construction of the wave function have
been given [2] and the extrapolated energy eigenvalue together with relativistic,
radiative, mass polarization, and finite nuclear size effects have been compared
with experiment [3]. )

Because rigorous error bounds to expectation values [4] are usually too large,

approximate error bounds are also considered. This requires an assessment of the

* Present address: Instituto de Fisica ¢ Quimica de $8o Carlos, Universidade de Sdo Paulo, 13560
Sao Carlos, S.P., Brasil.
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quality of the wave function which is undertaken in Section 2. The eigenvalues of
the 1-matrix and some expectation values are presented in Section 3.

The 1-matrix for the Be ground state has been studied with cI wave functions
[5]. A direct determination of the 1-matrix viaa many-body Green’s function has
also been reported [6]. The present calculation differs from previous ones in (1)
the emphasis that is given to the discussion of the stability of the results, and (2) the
use of a much larger orbital basis. The wave function employed accounts for
99.55%. of the theoretical correlation energy [2] and the gerieral characteristics of
the missing configurations are fairly well understood [1,2].

One-clectron expectation values for the Be ground state have been recently
discussed by Banyard and Taylor [7] from the point of view of the nearly additive
contributions of X shell, L shell, and intershell pair correlation functions. Their
numerical results concerning correlation effects are significantly different from the
ones in the present work. :

Although both rigorous and reasonable margins of stability for the computed
quantities have not been established, the results of this work are believed to be
stable for the given orbital basis (i.e., the limited c1results are believed to be stable
with respect to the full c1 treatment), and as such they may serve as an excellent
guide to test recént methods [6, 8] for the direct determination of the 1-matrix.

2. Quality of the Wave Function

The approximate wave function ® is a 650-term I series [11:

450
=1 ¢mlm |@rm| > | @t (1)
i

The configuration state functions (csFs) ¢,, are Ls eigenfunctions which are
classified according to inner electron couplings [1, 9] when degeneracies occur.
The orthonormal 10s9p847f5g3A 1/ orbital basis consists of approximate natural
orbitals (Nos) [10] computed as described in Ref. [2), and expressed as linear
combinations of Slater-type orbitals (sTos). The search for the final 650 csFs is
made as follows: (1) all singles and doubles, leading four-excited unlinked CSFs,
and major three-excited linked csFs are included in a primitive trial wave
function, (2) csFs are deleted according to Brown’s energy criterion [11] if
lam|<0.0003 and new csFs arc variationally tried. (The important quadruple
excitations turn out to be unlinked clusters and so it is easy to classify them
according to predicted partial energy contributions and eigenvector components.
The linked three-excited csFs are arranged in a hierarchy based on occupation
numbers of the participating Nos; such an ordering turns out to be approximately
correct with regard to partial energy contributions and eigenvector components.
Since the basis orbitals are very close to Brueckner orbitals, unlinked triple
excitations are for the most part negligible.) The leading terms not included in @
are csps with high harmonic functions not included in the orbital basis such as
1s*(i.)* with a2,=~0.00001. These csFs interact largely with the reference con-
figuration 15*2s? and so they affect the other a,.'s essentially through renormali-
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zation. The energy eigenvalue of @, E = —14.666902 a.u. (Be), differs from the
estimated {2] exact nonrelativistic energy E,, =—14.667328(25) by 30 parts per
million. '

Information about the guality of @ can be divided into “field” information
obtained in the process of wave function construction (truncatiop of csFs,
extrapolations, stability of 4,,’s) and “face value” information, which can be
obtained from a knowledge of @ alone. _

By construction, @ is a very close approximation to the full c1 wave funcT.:um
®req for the given orbital basis, as supported by the following field infop‘natlon:
(1) among aH possible csFs, those with |a,,|> 0.0003 are believed to be included
without exceptions, (2) {(®|@ecy) is estimated to be greater than 0.999999,_see
Section 2A, and (3) E — Egcr=—0.000019(2) a.u. [2]. The above considerations
constitite the basis of my belief that the results are stable with respect to the full cr
freatment. ]

Face value indicators of wave function quality are considered next, A useful
one is the overlap between ® and the exact V¥ because it can be used directlly inthe
computation of rigorous error bounds o expectation values [4]. Weinhold’s
overlap between approximate and exact density matrices [4] is also use.flfl. Ot}.ler
quality indicators such as electron—nuclear coalescence cusp data and virial ratios
are valuable for diagnosis of specific wave function deficiencies.

A. Overlap between ® and ¥

A rigorous bound to § = (®|¥) can be obtained by means of Eckart’s_ criterion
[12], which yields §>0.99915. Tighter rigorous bounds require an'mcr'eascd
amount of information and the improvement over Eckart’s criterion is not
significant enough to warrant their calculation [13]. - _ o

Improved but nonrigorous bounds to § can be obtained by considering a
'sequence of variational wave functions @, ®,, @5, . .., converging towards the
exact ¥. Let @, be the normalized projection of &, on the space spa'nned by the
cFss of ®,. In particular, let &= ®;, and for later purposes let us write:

¥= a3m®3w+33mR3w (2)
D3 = 23P23 + B23R23 = 1313+ B13Rus (3)

The wave functions @25 and @3 are ordered truncations of ;= @, Eq. (1), with
B35 =0.000004 and 8?3 ={.000008; @, and P, are the va.l:iational counterp.arts..

The main properties of the approximate wave functions are summarized in
Table I: (1) the energy eigenvalues are accurate to all figuires reported, (2} the
lower bounds to 8, = (@, |¥) are found by Eckart’s criterion using an extra?olated
energy eigenvalue E =—14.667328(25) a.u. (Be) [2] and th«_e experimental
energy difference [14] between the ground state and the ﬁrst_ e3<c§ted state c.>f 1:'he
same symmetry (the difference between corresponding relativistic and radiative
corrections is negligible in the present context).

The lower bounds S3 and S7 shown in Table I can be rigorously improved by
using the Gram determinantal inequality [4, 15] for a linearly independent set of
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TapLEL Salient properties of the sequence of approximate wave functions.

Property &, 3, &, Q
Enargy eigenvalue® -14.666 333 -14.665 594  -14.666 902 -l4.667 328({25)°
85 ¢ S 0.998 000° 0.993.550° 0.599 156° 1.
Lol O 6.999 993 0.999 997 1.
_ﬁ,;j. E4. (3} 0.000 08 0.000 004
% ga™i1- /3;)1/2 0.999 996 0.959 998
5:1‘ Egs. (9-10) 0.999 96l 0.929 972 0.999 987
size STO basis 10sopBd7£5g3hli same same
Size orhital basis  B8s7pbd&fdg2hli 9s8p7d6fd4gihll  10s9pBd7E5g3hli
Number of CSF's 253 310 650

“In a.. (Be); 1 a.u. (Be)=219,461.275(17) em™.
® From Ref. [2].
© Rigoroos lower bound obtained by Eckart’s criterion.

functions {f;}:
D=det (|} >0 4)

using f1 =V, fo=®d;, and f=9P, or $,. For example, if one sets f»=; and
considers the value computed for S1; = (®4|®3) (see Table I), one finds, using Eq.
@),

81> 85815~ V(1 ~ $3)(1-8%:)=0.999133 (5)

which is very close to §;>0.999150 reported in Table 1. If one could establish
independently a lower bound for §5/$, one could then use the result in Eq. (5)to
get an improved value for Ss, and the cycle could be repeated until convergence.
Unfortunately this possibility is not presently availabie,

There is an approximate way, however, to improve §;. From studies of
patterns of convergence of X shell, L shell, and intershell wave functions with
large basis sets, [2] I estimate {conservatively) that in Eq. (2) Bs. satisfies
B30 <0.000020. Thus a3 =(1-B3)/*>0.999990 and

. S3 = O!3q><¢3|q)3co) = 0-999990(@3!@3&) . (6)
where the value of {®3®;.) still needs to be estimated. For that I assume
(3| Do) = (D 1[D13) - Q)

since the leading terms not included in ®, are configurations with high harmonic
functions such as 1s®(ir)* which, as discussed earlier, affect the other a,’s
essentially through renormalization. Multiplying Eq. (3) by ®f and integrating
one finds

(q’1|@3) =8i3= a13(<D1|¢’13) ®
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because (@1|R1s)= 0. Using the values of @13 and S;5 given in Table I, one gets
{@1]P13) = 0.999997. Using Eq. (7) and replacing into Eq. (6} one finally gets

$3>0.999987 (9)

as a realistic lower bound for 85. Improved lower bounds for §; and §; can now be
obtained by replacing the value obtained in Eq. (9) into Eq. (5):

§1>0.999961, §,>0.999972 (10

B. Overlaps between Density Matrices
The 1-matrices ¥,(1/1') are defined in the usual way [10]:

y1(1/1')=N‘f O, 2, .. NYBL(L2, ..., )2 3,...,N) (11
and the corresponding occupation numbers n,(‘*) and natural spin-orbitals y{® are
given by

Ya(l/ 0= nf%® (12)

Weinhold [4] has introduced a new scalar product [£, ] between vectors £ and 5
whose components are spin-orbitals:

&1 m(l
§= (Ez(l) n= (7?2(1) (13)

(6 71=3 [ 20md) (14)

by definition

In particular, he considers vectors like vy
(ni)”zx 1
o= ((nz)” 2)(2) (15)

and similar vectors yq (the #s are in Coleman’s [16] normalization convention).
He then derives error bounds to one-electron expectation values where the
quantity o

o =[ve, vol (16)

replaces the usual overlap § = {®}¥), The point is that ¢ is usually smaller than §.
Unfortunately, numerical bounds for o are not presently available. However, one
can compute overlaps o, between approximate density matrices

Tar = [‘)’d)q, 7@..] . (17)

and compare them with the S,’s in Table 1. One finds 023 =0.9999994, gy, =
0.9999996, and.o ;5= 0.9999989, suggesting that ¢ is indeed much closer to 1
than S,
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C. Cusp Data and Virial Ratios

A necessary and sufficient condition for ® to satisfy the electron—nuclear
coalescence cusp condition [17),

@ay air [J' a0, ¥(1,2,. .. ,N)] = —ZW(r; =0) (18)

rf=°
is given by the “Fwavescusp” [18]
d —
-+ 1)5 (o ¢ xa(r )] rmo=Z (19)

for the radial part xu{r) of each natural orbital [19]. Selected results for the Nos of
®; are given in Table II. Except for the first four s-type Nos the results are

TABLEIL. Electron-nuclear coalescence cusp data
for selected natural orbitals of ®5.

i -(&+1)[d1n (:"exﬂ (r))/8x] o
10 4,003%

20 3,982

30 3.920

40 3.653

50 0.955

11 -9.204

21 2,562

12 105.

22 51,

® For the exact wave function all entries must be
equal to Z=4,

completely erratic, For y1, the cusp actually becomes negative due to the presence
of a 3p sTo with orbital exponent 14.9 corresponding to the innermost K shell
STO, see Ref. [2]. A 4p sT0 localized in the same region would have been equally
cffectiyc for the energy while having little influence on the cusp. A reasonable rule
to get acceptable cusps might be to have no nl/ sTO’s n=I+1, and n=7+2
localized near the nucleus or, at least, have the n =1!+2 srtos localized farther
away than the n =/+1 ones. The cusp condition for the total electronic density
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p(r) reads [20]:
d
—(1/2) -l p(=0=2 - (20)
while the result obtained with &, is 4.0020, The electronic density at the nucleus,
however, does not come out as badly as might be expected (see Section 3).

Kinetic energy results and virial ratios are given in Table IIL. Virial ratios are
just close enough to 1 to guarantee a good total energy (to more than eight

TapBLE III. Kinetic energy results and virial ratios, in a.u. (Be).

o, G D, té

Total energy ~14.666 332 -14.666 598 -14,666 902 -14,667 328

Kinetic energy 14.5664 975 14.666 240 14.667 526 14.667 328

z Xr3t -33,705 281 -33.706 541 -33.708 134
ng 4.373 973 4.373 707 4.373 706
~V/2T 1.000 046 1.000 012  0.999 979 1.

significant figures in the present case); the truncations to the full cr, although quite
stable with respect to the total energy, might be responsible for the poor virial
ratios.

3. Resnlts and Discussion
A. Occupation Numbers

For a 'S state the natural spin-orbitals are symmetry adapted with equivalence
restrictions [21]:

X:'Imm, = Xi (r) Km (6} ﬁb)ﬂ'm, (21)
and the occupation numbers are (4 +2)-fold degenerate:
Ritmm, = it (22)

The occupation numbers obtained from the best approximate wave function
considered, @3, are given in Table I'V. Most ny's converge from below; nio, 720,
and n;5 converge from above, while nap, fa1, %12, and ni4 show oscillatory
convergence. Also shown in Table IV are quantities Ay

Ay =2 max |(nP - )= ng—n§ @3)

where g =1 or 2. The Ay's are tentatively interpreted as margins of instability.
Except for Axgand Ay, the Ay's are smaller than 0.0001. Those Ay’s which exceed
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TABLEIV. Occupation numbers n5> and tentative margins of instability Ay, Bq. (23),

L "i0 AV fi1 A Pia 4,

1 0.998 087 20(-6)  0.029 103 200(-6)  0.5978(-4) 120(~8)
2 0.910 531 700(-6)  0.3560(-3) 8(-7)  0.1217(-a}) 20(-8)
3 0.1846(-2)} 30(-6)  0.4346(-4) 8(-7})  0.4803(-5) 15(-8)
4 0.4829{-3) 2(-6)  0.1406{-4) 5(-7)  0.1772(-5) 60(-B)
5 0.2026(-4) 2{-6)  0.3511(-5) 5(=7)  0.5241(=6) 20(-8)
6 0.5957(-5) 1{-6)  0.8935{-6) 2 0.1059{-6)  ?

7 0.8284(-6) 2 0.1882({-6) 7 0.1960(-7) 2

8 0.2196(=8) ? 0.3156{-7) 2 0.1528{-8) 2

9 0,6468{(-7) ? 0,5839(-8) 2
10 0.7675{-8) ?

i n A n A n, ° A

i3 i3 14 14 i5 i5

1 0.5439{-5) 50(-8)  0.9148(-6) 9(-9)  0.2196(-6) 100(-8)
2 0.1064(-5) 12(-B}  0.1658(-6) 30(-9)  0.3468(-7) 60{-8)
3 0.6640(-8) 2 @ 0.1520(-6) 20(-8)  0.7282(-8) 16{-8)
4 0.26874(-8) ? 0.3060(-7) 6 (-9}

5 0.9869(-7) ? 0.5878(-8) ?

6 0.2481(-7) 2

7 0.5244(-8) 2

2 The apparent instability of the a;,’s for i=3 is due to a circumstantial truncation of
many configurations including /-type orbitals when going from 5 to Py
Only up to h-type occupation numbers are tabulated. 7,5 =0.8190(—8)butitisa K
shell NO; the leading L shell NO of i-type has a considerably larger occupation number.

their corresponding r’s in 50% appear as “?” and are considered to be meaning-
less.

It is of interest to examine the relationship between the A;’s and the estimate
for 85 given in Eq. (9). Ando [22] showed that if ¥ and © have p-matrices with
eigenvalues A; and u;, respectively, then it holds that

Eh-wl=2| [ e-opar] @4

when the p-matrices are normalized in Coleman’s [16] convention. One therefore
must have

¥ |ny—n | =8(2—2855)"*=0.040 (25)

I

Because of the limited amount of information required by Eq. {24), the corre-
sponding inequality is probably a weak result. Using Eq. (23) and the results of
Table IV, one finds

T = nP| =Y, (41 +2)Ay =0.004 26)
i il
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where only Ajg, Azg, Asg, 2nd Ayy make effective contributions. Thus, Eq. (26)
allows for Ay's ten times greater (in average) than those reported in Table IV, but
not any greater. ’

The eigenvalue spectra obtained by Olympia and Smith [5] follow the present
ones very closely (to within a few percent or better)} up to hao, 151, and naz, after
which the discrepancies reach over 50%. In the present set of calculations the
margins of instability are less than 50% up to reg, Bs1, 52, Boa, e, and Aas.

B. Some Expectation Values and the Density at the Nucleus

Consider one-electron expectation values of symmetric operators f

N
f= % ) @7)

(=5 mGelf Dl (28)
]
Some expectation values are given in Table V, together with error bounds A based
on the Jennings—Wilson formula [23]:
A=2Ne (O] (1)®)— (@] (1D 29
&=(2~25)"%=0.005 : (30

where S is the approximate lower bound to the overlap given by Eq. (9).

TaBLEV, Someexpectation values for the Be ground state, ina.u, (Be).

wave function 2 =t T r® =%
®l 57,5901 8.426 320 5.977 09 16.279 5 233.08
@2 57.5954 8.426 635 5.976 44 16,275 1 232,91
®3 57.5966 8.427 033 5.974 82 16,263 8 232,43

Jennings—Wilsons's
bounded result 8.43{15) 5.97(5} 1l6.26 (25}

For the nuclear magnetic shielding constant o [24] one finds
o =—(1/3)a™r ") =0.0001496(30) a.u. 31

with an uncertainty of 2.0%. The Hartree-Fock result [25], & =0.0001493, is
quite similar but its Jennings—Wilson’s unicertainty is 120%. The molar diamagne-
tic susceptibility y, [26] is

xa==(1/6)Na’ad(r’y=—12.88(20) (in 107° ecm® mole™) 32)
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with an uncertainty of 1.5%. The Hartree-Fock result [27], ys=—13.724,is 6%
above the present prediction but its Jennings—Wilson’s uncertainty is 90%.

The results for the density at the nucleus p(0) are given in Table VI. For Be*"
the present result agrees with the “exact” result of Pekeris [28] to within 30 parts
per million, confirming that 1 is an appropriate method [29] for the density at the
nucleus. In going from Be®* to Be there is a 3% increase in p(0) due to the valence
electrons. Since these are better described [2] than the K shell electrons, it is
assumed (conservatively) that p(0) for Be is given with 100 parts per million of
uncertainty, as reported in Table VI

TaABLE VI, Density at the nucleus p(0)for the
Be groundstate, ina.u. (Be).

wave function plo}
2%

Be“’, present work 34.3974

Be2+, "exact” 34,39522
0} 35.3660

35.3713
D,
.3698

Q, 35.36

Empirical extrapolation 35.370(3)

“ From Ref, [28].

C. Recent Results of Banyard and Taylor

Banyard and Taylor [7] have recently reported some expectation values for
Be-like ions which are significantly different from the ones reported in Tables V
and VI. One possible reason for the discrepancies is that they neglected single
excitations which for Be in a Hartree—Fock basis of reference orbitals come out
with large (about 0.04) c1 coefficients [30]. Their poor virial ratio —V/2T=
1.0019, however, is not inconsistent with four decimal precision in the energy, i.e.,
scaling will not improve their total energy.
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