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Abstract. For each alkali metal (M) in the gas phase, the difference Au(M) between the 
nuclear shielding of the neutral atom and of the first positive ion is computed from 
non-relativistic Hartree-Fock theory. The contributions to Au(M j arising from electron 
correlation are derived from the Hellmann-Feynman theorem by combining Dirac-Fock 
and experimental ionisation potentials and are shown to be small. It is also shown that 
Am(M) must be positive in contrast to the reported experimental result for Au(Cs). 

The results of the present theory agree with experiment for Au(Rb) and two previous 
methods for calculating Au(Mj are shown to be completely untrustworthy. The reported 
experimental value for Aa(K)  is seven times larger than the present theoretical result whilst 
that reported experimentally for Au(Cs) is not even positive. It is concluded that the 
discrepancies between theory and experiment for both Au(K) and Au(Cs) greatly exceed 
any errors in the present calculations, and hence that the experimental values should be 
re-examined. 

1. Introduction 

In nuclear magnetic resonance experiments, the frequency of the electromagnetic 
radiation needed to induce transitions of the nuclear spins between their energy levels 
in a static external magnetic field depends upon the electronic environment of the 
nucleus. This dependence arises because the motion of the electrons caused by the 
external field (Bo)  creates an additional magnetic field at the nucleus which therefore 
experiences a field ( B ’ )  different from Bo. The difference between the B‘ field and the 
applied field Bo defines the magnetic shielding tensor U (Abragam 1961) through 

B ’ = B , - a :  Bo. (1) 

It is important that the theory of nuclear shielding be thoroughly understood because 
magnetic resonance methods are extensively used throughout physics and chemistry. 

The most direct method of testing the standard non-relativistic theory of nuclear 
shielding (Ramsey 1950) would be to derive U by comparing the results of a resonance 
experiment on a bare nucleus with one in which the nucleus is embedded in an atom 
or a molecule. However such a test has not yet been carried out because it has not 
been possible to perform accurate experiments on bare nuclei. Nevertheless the 
difference ( ar(HzO) - a (H) )  between the trace (al(H,O)) of the proton shielding tensor 
in liquid water and the shielding (a( H)) of the hydrogen atom is known from experiment 
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to be 7.91 ppm (Winkler et a1 1972) by combining a measurement of the electron : proton 
g-factor ratio (Winkler et a1 1972) with one of the electron: water g-factor ratio (Lambe 
1969). The difference between the proton shielding in liquid water and the hydrogen 
molecule has also been measured to be -0.63 ppm (Thomas 1950, Hardy 1959) yielding 
an experimental value for a (H2)  - a ( H )  of 8.54 ppm. The shielding for the hydrogen 
atom can be calculated exactly (=  17.73 ppm, Winkler et a1 1972) whilst that for the 
hydrogen molecule is computed to be 26.20 ppm using coupled Hartree-Fock theory 
plus vibrational averaging (Ditchfield 198 1) and 27.56 ppm using a correlated wavefunc- 
tion (Ishiguro and Koide 1954) without vibrational averaging. The agreement between 
the theoretical (8.47 ppm by coupled Hartree-Fock theory and 9.83 ppm for the 
correlated wavefunction) and experimental (8.54 ppm) values of a( H2) - U (  H) provides 
strong evidence that the Ramsey theory (Ramsey 1950) is correct. The recent coupled 
Hartree-Fock result (Ditchfield 1981) is probably more reliable than the older corre- 
lated one because there is evidence (Sadlej and Raynes 1978, Daborn and Handy 1981) 
that electron correlation makes only a small contribution to the shielding. A second 
value for a (H2)  is calculated by adding the paramagnetic contribution (Ramsey 1950) 
of -5.725 ppm, derived from the experimental spin-rotation interaction constant (Reid 
1975), to the diamagnetic contribution (Lamb 1941, Ramsey 1950) of 32.02 ppm, 
computed from a highly accurate correlated wavefunction for the H2 ground state 
(Reid 1975). The close agreement between the resulting prediction of 8.56ppm for 
a( H2) - a( H) with the experimental value of 8.54 ppm provides further strong evidence 
that the Ramsey theory is correct. An experimental value for the difference a ( H 2 0 )  - 
a ( H )  between the shielding in gaseous H 2 0  and that in the hydrogen atom is derived 
by combining the measurements a ( H 2 0 )  (gas) = 30.052 ppm and a l ( H 2 0 )  (liquid at 
25 "C) = 25.688 ppm (Raynes 1978) with the value of 7.91 ppm for al(H,O) - a ( H )  
(Winkler et a1 1972). The resulting experimental value of 12.27 ppm for a ( H 2 0 )  - a ( H )  
agrees well with the theoretical prediction of 12.40 ppm calculated by subtracting 
17.73 ppm ( a ( H ) )  from the coupled Hartree-Fock result for a ( H 2 0 )  of 30.13 ppm 
(Holler and Lischka 1980). 

Although there is a vast literature of calculations of nuclear shielding (e.g. Jameson 
1982), the three-proton shieldings discussed seem to be the only ones for which reliable 
theoretical and experimental data are simultaneously available. Nevertheless it should 
be pointed out that, with the two exceptions discussed in this paper, no calculations 
of nuclear shielding have shown discrepancies with experiment which could not be 
plausibly ascribed to approximations made in describing the electronic structure of 
the species. 

The evidence outlined above causes it to be widely, and almost certainly correctly, 
believed that the non-relativistic theory (Ramsey 1950) of nuclear shielding is correct. 
However very serious discrepancies between theory and experiment have been reported 
(Davis et al 1974, Oluwole 1977, Obiajunwa et a1 1983) for the difference ( A a ( M )  = 
a ( M )  - a(M+))  between the shieldings ( a ( M ) )  in three gaseous alkali atoms and those 
(a(M')) in their gaseous first positive ions. This paper has two main objectives. The 
first is to point out that the values of ACT( M) for both Rb and Cs calculated previously 
(Davis et a1 1974, Oluwole 1977) use theories which are so poor that the results cannot 
be credited with any significance. It is then shown that for Rb a reliable calculation 
using Hartree-Fock theory brings theory and experiment into agreement. The second 
object of this paper is to show that the correlation contribution to A a ( M )  is far too 
small to explain the large discrepancies between theory and experiment which remain 
for both K and Cs; this means that the experimental values are probably in error and 
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should be re-examined. An additional argument is given to show that the shielding 
in each neutral metal is greater than that in its first positive ion which shows that the 
experimental result (Oluwole 1977) that gives Aa(Cs) < 0 is incorrect. 

Both the presentation of accurate predictions of Aa(M) for all the alkalis and the 
development of methods for reliably deriving the correlation contribution to these 
differences constitute two useful byproducts of this work. The use of similar calculations 
in the interpretation of NMR spectra of alkali anions in solution will be reported 
elsewhere. 

2. Predictions of nuclear shieldings 

2.1. Hartree- Fock shieldings 

In the Ramsey theory the total shielding is the sum of a diamagnetic and a paramagnetic 
part. In non-relativistic theory using exact electronic wavefunctions the paramagnetic 
shielding vanishes for any atomic S state, whether closed or open shell (Hylleraas and 
Skavlem 1950), if the origin defining the vector potential of the Bo field is taken at the 
centre of the nuclear charge distribution which is taken to be spherical. The trace 
a,,(G) of the diamagnetic part of the exact shielding tensor for an S state of species 
G is then defined through the exact N-electron wavefunction l$exG(r, . . . r N ) )  for G by 

Here c is the velocity of light in atomic units and the purely radial function Arn(r)  
defines the vector potential Arn(  r )  generated by the nuclear magnetisation through 

&,( r )  = yn in x rArn( r )  c-’ ( 3 )  
A 

where yn is the nuclear gyromagnetic ratio and I,, is the nuclear spin operator. In the 
point dipole description of the nuclear magnetisation Arn( r )  is r -3 ,  whilst for the model 
in which the magnetisation is uniformly distributed over the surface of a sphere of 
radius r , ,  Arn( r )  equals F 3  for r 2 r,  but equals r i 3  for r G r ,  (Lindgren and Rosen 1974). 

If the electronic wavefunction in the exact expression ( 2 )  is approximated by the 
Hartree-Fock function, the shieldings for a neutral alkali atom (aHF(M)) and its first 
positive ion (aHF(M+)) are given by the orbital sums 

aHF(M+) =2C(C(M+)lr2Arn(r) lC(M+))(3c2)- ’ .  
C 

Here C ( M )  and C(M+)  are the purely spatial Hartree-Fock core orbitals of the neutral 
and the first positive ion of M and V(M) is the spatial valence Hartree-Fock s orbital 
of the neutral atom. The factors of two arise because each core orbital contains two 
electrons. The Hartree-Fock prediction ( ha,,( M))  of the shielding difference derived 
from ( 4 )  decomposes into a sum of a core (A(+HFC(M)) and a valence (aHFv(M)) 
contribution 

A’+HF(M) = A~,Fc(M) + aHFdM) ( 5 a )  

(56) A ~ H F ~ M )  = 2 C ((C(M)I r’Arn(r)IC(M)) - (C(M’)Ir’Arn( r)I c(M+)))(3c2)-I 
C 
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The non-relativistic orbitals required in (4), which were taken to satisfy the usual 
symmetry and equivalence restrictions (Nesbet 1955), were computed by running the 
Oxford Dirac-Fock programme (Grant et a1 1980) with an artificially large value of 
the velocity of light. For atomic S states this procedure reproduces exactly the results 
of conventional non-relativistic calculations (Wood and Pyper 1980). 

The Hartree-Fock shieldings and shielding differences predicted using the point- 
charge point-dipole (i.e. Arn( r )  = r - 3 )  description of the nucleus are compared with 
the reported experimental values of Aa(M) in table 1. The shieldings a,,(M) and 
aHF( M+) predicted when the nuclear charge is described as uniformly distributed 
throughout a sphere of radius r,  with the nuclear magnetisation residing on the surface 
are less than 0.05 ppm smaller than those of table 1 except for aHF(Cs) and aHF(Cs+) 
which are 0.21 ppm smaller; all the A(+HF(M) predictions being identical to those of 
table 1 to within 10-4ppm. The results also show that, although the total shieldings 
are dominated by the contributions from the core orbitals, the core makes only a small 
contribution (AuHFc(M)) to AaHF(M) because the neutral (C(M))  and ion (C(M+))  
core orbitals are very similar. The core contributes negatively to AaH,(M) because 
removal of the valence electron slightly reduces the electron density in the core region 
thereby allowing the core orbitals to contract slightly. 

Table 1. Hartree-Fock shieldings for alkali atoms and cations (ppmt) .  

~ ~~ 

Li 95.404 101,450 6.046 -0.085 
Na 623.805 628.894 5.089 -0.261 
K 1325.421 1329.354 3.933 2 9 1 6  -0.267 
Rb 3363.200 3366.793 3.593 3.8 + 2.6 -0.272 
c s  5777.03 1 5780.199 3.169 -7.1*2.0 -0.243 

t For definitions, see text. 
$ Experiment: Obiajunwa et al (1983) (K), Davis et al (1974) (Rb), Oluwole 1977 (Cs). 

The results of table 1 show that there is agreement between the theoretical and 
experimental shielding difference for Rb (Aa(Rb)). This shows that for Rb the 
discrepancies between theory and experiment reported previously (Davis et a1 1974) 
originated solely from inadequate theory. The previous theoretical value of -8.2 ppm 
for Aa(Rb+) (Davis er a1 1974), which even has the wrong sign, was derived by 
subtracting the values of a (Rb)  and a(Rb+) predicted by a simple three-parameter 
formula (Malli and Fraga 1966) constructed to reproduce the Hartree-Fock shieldings 
of lighter systems. Although the three-parameter formula can reproduce the large total 
shieldings to within approximately 1%, it could never have been intended for the 
calculation of the much smaller shielding differences of interest here. Clearly indepen- 
dent errors of 1 %  in the predictions of a ( M )  and a (M+)  can give a value of Aa(M) 
that is entirely meaningless. The second previous theoretical prediction for Aa(Rb) 
of 140 ppm is reported (Davis et a1 1974) as having been calculated from the formula 
(Lamb 1941) 

a ( G )  = 31.9(2,)"/' ppm ( 6 )  
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derived by using the Thomas-Fermi description of a neutral atom. Since the calculation 
of Aa(M) requires the shielding (a (M+))  for M+, which is not a neutral system, (6) 
is not applicable directly. However a (M+)  was calculated from (6) by equating a (M+)  
to the shielding produced by the isoelectronic inert gas. This approximation is very 
poor and thus gives a meaningless value for Aa(M). Indeed the quantity aHF(Rb)- 
( + ~ ~ ( f i )  = 121 ppm bears no resemblance to the Hartree-Fock prediction (AaHF(Rb)) 
of table 1. Similar calculations for K and Cs again give meaningless values of 112 ppm 
and 161 ppmi  respectively for Aa(M). It is also found that differencing the neutral 
and cation shieldings predicted from the three-parameter formula of Malli and Fraga 
(1966) yields an unrealistic value of 89 ppm for Aa(Cs). (The value of 179 ppm reported 
by Oluwole (1977) appears to be in error). For both K and Cs, table 1 shows that the 
disagreement between Hartree-Fock theory and experiment is very marked. The 
Hartree-Fock prediction of ha( K), which agrees as expected with previous calculations 
(Dickinson 1950), is only one seventh of the reported experimental value (Obiajunwa 
et al 1983) whilst the negative sign of the reported experimental value of Aa(Cs) 
(Oluwole 1977) is most surprising. 

2.2. Electron correlation corrections 

It is now shown that electron correlation makes only a small contribution to the 
shielding difference Aa(M) and hence that the large discrepancies between the experi- 
mental and Hartree-Fock predictions of Aa(M) for K and Cs do not arise from 
correlation. The core-valence correlation contributes positively to a( M) and hence 
to A a (  M) because the introduction of correlation to the Hartree-Fock function reduces 
the core-valence repulsion thereby allowing the valence orbital to contract (Partridge 
et a1 1983). This shows that core-valence correlation cannot be responsible for the 
discrepancy in Cs for which a negative experimental Aa(M) value is reported (Oluwole 
1977). Although the core-valence correlation will increase Aa(K),  it is contrary to all 
evidence from previous calculations to suppose that this could be six times as large 
as A(+HF(K) as would be required to explain the discrepancy between theory and 
experiment. Thus correlation only increases the first ionisation potentials of alkali 
metals by approximately 10% and reduces a suitably defined mean radius of the valence 
orbital by 3% (Partridge et a1 1983). Only the core-core correlation contribution to 
Ao(M), whose sign is not known with certainty, might in principle be responsible for 
the discrepancy for Cs. However, the close similarity between the core orbitals of Cs 
and those of Cs+ as manifested by the small core contribution (AaHFC(Cs) = -0.24 ppm) 
coupled with the result (Partridge et a1 1983) that core-core correlation scarcely changes 
(1’) for Cs means that the core-core correlation contribution to Aa(Cs) is highly 
unlikely to be 50 times larger than AaHFC(Cs+). This core-core correlation contribution 
would have to have this magnitude to explain the Cs discrepancy. 

The conclusion that correlation makes only a small contribution to Aa(M) and 
cannot therefore be responsible for the discrepancies between theory and experiment 
can be justified more quantitatively by invoking the Hellmann-Feynman theorem. This 
theorem is obeyed not only by the exact neutral and cation wavefunctions (Feynman 
1939) but also by the closed-shell Hartree-Fock cation wavefunctions and by the 
restricted open-shell Hartree-Fock functions of the neutral alkalis (Epstein 1974). The 

t The value of -170ppm reported as the result of such a calculation for Cs (Oluwole 1977) appears to be 
in error. 
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exact and Hartree-Fock energies of the system having nuclear charge Z and isoelec- 
tronic with the species G, where G = alkali atom M or cation M+, will be denoted by 
EexG(Z) and E H F G (  2)  respectively. Differentiation of these energies with respect to 
Z yields (Mazziotti 1970, Mehrotra and Saxena 1975) an expression for the contribu- 
tion, arising from electron correlation, acorr(G) to the nuclear shielding in species G, i.e. 

Here (EexG(Z) - EHFG(Z)) is the correlation energy of the species isoelectronic with 
G and having nuclear charge Z, and ZM is the nuclear charge of the alkali metal M. 
For two- and three-electron atoms, the derivatives of the correlation energy with respect 
to Z entering (7) can be evaluated because the correlation energies are known accurately 
from both experiment (Clementi 1963) and ab initio calculation (Frankowski and 
Pekeris 1966). For the heavier alkalis acor,(M) and acorr(M+) cannot be evaluated from 
(7) in practice because neither the total correlation energies nor their nuclear charge 
dependences are currently available. However an expression for the correlation contri- 
bution Aacorr(M) to the neutral-cation shielding difference Aa(M) can be derived by 
subtracting the result (7) for acorr(M+) from the corresponding result for vcorr(M). Thus 

with 

Here ZcorrM( 2)  is the contribution, arising from electron correlation, to the ionisation 
potential IM(Z) for the removal of the valence s electron from the system of nuclear 
charge Z and isoelectronic with the neutral alkali M. The result (8) is useful because 
the Z dependence of ZcorrM( 2)  can be derived from experimental ionisation potentials. 
A linear approximation to (d~corrM(Z)/dZ)z,z,  can be derived from the correlation 
contributions to the first ionisation potentials of the alkali metals and the second 
ionisation potentials of the alkaline earths. Quadratic and cubic approximations can 
be derived by also making use of the third ionisation potentials of the group IIIA 
elements and the fourth ionisation potentials of the group IVA elements. Each quantity 
IcorrM( Z )  is derived by subtracting from the appropriate experimental ionisation poten- 
tial (see Appendix) the relativistic Dirac-Fock prediction. The latter is calculated as 
the difference between the total energy of the single-configuration Dirac-Fock ( N  - 
1)-electron wavefunction for the cation and the energy of the N-electron Dirac-Fock 
wavefunction containing a siqgle valence s electron. The use of Dirac-Fock rather 
than Hartree-Fock ionisation potentials will yield more accurate values for the required 
non-relativistic correlation energy differences because this procedure eliminates rela- 
tivistic effects inherent in the experimental results except for the very small relativistic 
correlation contributions to the ionisation potentials. It is shown in the Appendix that 
neither the Breit interaction, accurately computed, nor the Lamb shift, approximately 
calculated, contribute significantly to the ionisation potentials. However the experi- 
mental ionisation potentials of the first row elements need to be corrected for nuclear 
motion (see Appendix). 
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The correlation contributions to Au(M) predicted from (8) using the cubic approxi- 
mation are presented in table 2. In the Appendix it is shown not only that the cubic 
approximation to (dIC,,,,,(Z)/dZ),=,, is slightly preferable to the quadratic one, but 
also that the values of Aucorr(M) predicted using the two approximations, see table 2, 
do not differ by more than 16%. Even the values for Aucorr(M) predicted using the 
linear approximation to (dIc,,,,(Z)/dZ),=,, do not differ from those given in table 
2 by more than 20%. The reliability of table 2 can be further checked by comparing 
the results of accurate a6 initio calculations with the predictions of (7) for the correlation 
contributions to the total shieldings of Li+ and of Li. Thus the value for ucorr(Li+) of 
0.0172 ppm derived from (7) using the cubic approximation to (d(E,,,,+(Z) - 
EHFL,+(Z))/dZ)Z=3 agrees almost perfectly with the exact result of 0.0179 ppm calcu- 
lated from Z-expansion perturbation theory carried through to tenth order as described 
in the Appendix. Although a6 initio results of such high quality are not currently 
available for Li, the discrepancy between the prediction from (7) of ucorr(Li) = 
0.0450 ppm and the a6 initio value of 0.0403 ppm (see appendix) is no greater than 
the probable error in the ab initio value as gauged from the difference 0.00092au 
between the computed and exact kinetic energy. 

Table 2. Alkali-atom-cation shielding difference predictions ( 4 u ( M ) )  with electron correla- 
tion (ppm). 

M ArCorr(M)t Actth(M)+ AreXp,(MB 

Li 0.028 6.074 
Na 0.090 5.179 
K 0.145 4.078 29+6 
Rb 0.180 3.773 3.8 f 2.6 
cs 0.141 3.310 -7.1 k2.0 

t Derived via equation (8) using cubic fits to the correlation contributions (IcorrM(Z), table 
A5) to the experimental ionisation potentials corrected for nuclear motion, Breit interaction 
and Lamb shift. 
$ Best theoretical value Aa,,(M) = 4uHF(M)+Auccorr(M).  
§ See footnote to table 1. 

The results of table 2 show that electron correlation slightly increases Au(M). It 
can be concluded that electron correlation makes only a small contribution to the 
neutral-cation shielding difference Au(M), and hence that this is not responsible for 
the discrepancies between the theoretical and experimental results for Au( K) and 
Aa(Cs). 

3. Dependence of nuclear shielding on ionisation state 

In this section it is shown that shielding in a neutral atom is greater than that in its 
first positive ion. 

Since the total energy of a neutral atom is lower than that of its first positive ion, 
it follows from the virial theorem that the total potential energy, composed of the 
electron-nuclear attraction plus the interelectron repulsion, of the atom is more negative 
than that of the first positive ion. It immediately follows that the total interelectron 
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repulsion of the neutral atom would have to be less than that of the first positive ion 
if the nuclear shielding in the neutral really was less than that of the positive ion, i.e. 
if Aa(M) were negative. This is extremely unlikely. Furthermore, since the virial 
theorem shows that the kinetic energy of M is greater than that of Mt, it would follow 
that if a ( M )  were less than a(M+),  then the valence s electron of an alkali metal is 
bound not by the attraction for the nucleus but by a reduction of the total interelectron 
repulsion. 

The exact shielding difference, Aaex(M), can be related to the Z dependence of 
the first ionisation potential, IM(Z). Application of the Hellmann-Feynman theorem 
to the derivative with respect to Z of the exact energies E e x M ( Z )  and EexM+(Z) yields 

i.e. 

This result immediately shows that Aaex(M) must be positive because all ground-state 
ionisation potentials belonging to an isoelectronic sequence increase with increasing 
2 (Moore 1971). 

The reliability of (10) can be checked by deriving the total neutral-cation shielding 
differences ( A V (  M)) from the experimental ionisation potentials of the alkali metals, 
alkaline earths and the group IIIA and IVA elements. Although the use of experimental 
ionisation potentials does not eliminate the relativistic contributions, these are almost 
negligible as evidenced by the 0.0045 au relativistic contribution to the first ionisation 
potential of Cs calculated as the difference between the Dirac-Fock and Hartree-Fock 
ionisation potential predictions. The shielding differences A u (  M) predicted from (10) 
by using linear, quadratic and cubic fits to I M ( Z )  are presented in table 3. Even the 
predictions from the less reliable linear fits not only reproduce semi-quantitatively the 
results of table 2 but also show conclusively that Aa(M) is positive. The results derived 
from both the quadratic and cubic fits are significantly more trustworthy, almost exactly 
reproducing the most reliable predictions of Aa(M) given in table 2.  It can therefore 
be concluded that Aa(M) is positive in sharp disagreement with the experimental 
result reported (Oluwole 1977) for Cs. 

Table 3. Theoretical alkali-atom-cation shielding differences (Auth(M)) compared with 
those derived solely from experiment (ppm). 

Au(M) from ( l 0 ) t  

M Linear Quadratic Cubic Aut,(M)S 

Li 8.362 6.111 6.099 6.074 
Na 6.455 5.308 5.257 5.179 
K 4.912 4.197 4.148 4.078 
Rb 4.470 3.921 3.879 3.773 
c s  3.986 3.536 3.462 3.310 

t Derived from equation ( I O )  using experimental ionisation potentials ( I , ( Z ) )  reported 
in table A5 of the Appendix. Fit types, linear, quadratic or cubic, defined in text. 
$: Best theoretical value = AuHF(M) + Au,,,,(M). 
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4. Conclusion 

The differences Aa(M) between the nuclear shieldings in alkali atoms and in their first 
positive ions have been calculated from non-relativistic Hartree-Fock theory. The 
corrections to Aa(M) arising from electron correlation have been derived through the 
Hellmann-Feynman theorem by combining Dirac-Fock and experimental ionisation 
potentials and are shown to be small. A further argument based on the Hellmann- 
Feynman theorem shows that Aa(M) is positive. This is used in conjunction with 
experimental data to derive values in close agreement with the essentially ab initio 
results for Aa(M). Two highly approximate methods for calculating ha(  M) previously 
reported (Davis et a1 1974, Oluwole 1977, Obiajunwa et a1 1983) have been shown to 
be quite inadequate. 

The theoretical and experimental results for the shielding difference Aa(Rb) agree 
but qualitative and quantitative discrepancies between theory and experiment for both 
Aa(K) and Aa(Cs) cannot be explained by errors in the theory. The present theoretical 
calculations of nuclear shieldings have been shown to be reliable. Thus it is how highly 
desirable that the experimental measurements and their analysis should be re-examined 
and it would be particularly interesting if Aa(K), Aa(Rb) and Au(Cs) were to be 
remeasured in a single series of experiments. 

Appendix 

A. 1 .  Comparison of calculations of correlation contribution to shieldings 

For the two-electron isoelectronic sequence the non-relativistic Hartree-Fock energies 
(EHF2(Z)) computed by running the Oxford Dirac-Fock programme with a large value 
of the velocity of light, the exact non-relativistic energies ( E e x 2 ( Z ) )  (Frankowski 
and Pekeris 1966) and the correlation energies (Ecorr2(Z) = E e x Z ( Z )  - EHF2(Z)) are 
presented in table Al .  These correlation energies differ slightly from those used 
previously (Mazziotti 1970) in a similar calculation of the correlation contribution 
(acorr2(Z)) to the nuclear shielding because the Hartree-Fock energies of table A1 are 
slightly lower than those used by Mazziotti which were computed (Clementi 1965) by 
the basis set expansion technique. This table also presents the Hartree-Fock prediction 
( ( r - ' ) H F )  for ( r - ' )  and the exact results ( ( r - ' ) e x )  computed from the ( I - ' )  coefficients 
calculated from sixth-order 2-expansion perturbation theory (Scherr and Knight 1964). 

Table A l .  Correlation energies and ( r - l )  for two-electron systems (au)?. 

H- 
He 
Li+ 
BeZ+ 
B3+ 
c4+ 
N5+ 
06+ 

0.527 750 
2.903 724 
7.219913 

13.655 566 
22.030 972 
32.406 247 
44.781 445 
59.156 595 

- E,  F2 (Z 1 

0.487 930 
2.861 680 
7.236 416 

13.61 1 299 
21.986 235 
32.361 193 
44.736 164 
59.111 143 

0.039 820 
0.042 044 
0.043 497 
0.044 267 
0.044 131 
0.045 054 
0.045 281 
0.045 452 

3.376 633 
5.375 848 
7.375 501 
9.375 328 

11.375 231 
13.375 171 
15.375 132 

1.371 344 
3.374 565 
5.314 839 
1.374911 
9.314 949 

11.374 966 
13.374 976 
15.374 982 

t For definitions see text. 
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For Lit the calculation needed to be extended to higher order, the coefficients up to 
tenth order being derived through the Hellmann-Feynman theorem from thz energy 
series calculated by Midtdal (1965). 

The slope (dECorrN(Z’)/dZ’),~,, needed to derive the correlation contribution 
uCorrN(Z) to the shielding of the N-electron system having nuclear charge Z through 

must be calculated by differentiation of some analytic function reproducing the correla- 
tion energies considered. A linear approximation to uCorrN(Z) is derived from the pair 
of correlation energies EcorrN(Z) and EcorrN(Z+ l ) ,  a quadratic one by using also 
EcorrN(Z + 2 )  whilst a cubic approximation is calculated from the four correlation 
energies EcorrN(Z) to EcorrN(Z+ 3). A variant of each of these predictions is generated 
by replacing EcorrN(Z + m )  for the largest m considered by EcorrN(Z - 1). In table A2 
the predictions of these six different methods for deriving uCorr2(Z) are compared with 
the exact results calculated by differencing the exact and Hartree-Fock ( r - I )  values 
presented in table Al .  The results show that a cubic fit to the correlation energies of 
the ion of interest and of the three ions of higher nuclear charge yields the most reliable 
values for uCorr2(Z). The results also show both that ucorr2(Z) is predicted slightly less 
accurately from quadratic fits to Ecorr2(Z - l ) ,  ECorr2(Z) and Ecorr2(Z+ 1)  (Mazziotti 
1970) and that linear fits introduce appreciable errors. 

Table A2. Comparison between exact correlation contributions to nuclear shielding in 
two-electron systems with values derived from correlation energies (ppm). 

uccoir2(Z) from correlation energies, equation (A. l )  

Quadratic, Quadratic, Cubic, Cubic, 
Linear, Linear, Z, Z +  1 ,  Z - I ,  2, 2, Z + 1, Z- I ,  z, Exact 
Z, Z + l t  2-1, Z i  Z + 2 i  Z+ I t  2 + 2 ,  Z + 3 t  Z + l ,  Z + 2 t  Ucorr2(Z) 

H- 0.039 5 0.046 3 0.046 8 
He 0.025 8 0.039 5 0.031 9 0.032 6 0.034 1 0.032 4 0.036 7 
Li+ 0.013 7 0.025 8 0.0163 0.019 7 0.017 2 0.018 6 0.017 9 

B3+ 0.005 63 0.008 34 0.006 43 0.006 98 0.006 63 0.006 80 0.006 73 
c4+ 0.004 03 0.005 63 0.004 53 0.004 83 0.004 73 0.004 70 
N5+ 0.00304 0.00403 0.003 53 0.003 46 
06+ 0.003 04 0.002 66 

t Fits dE,,,,,(Z)/dZ calculated as: Ecorr2(Z+ 1) - EcorrZ(Z), linear, 2, Z +  1; E,,,,,(Z) - Ecorr2(Z- l ) ,  linear, 
2, Z-1; [4E,,,,,(Z+I)-3E,,,,,(Z)-E,,,,,(Z+2)]/2, quadratic, 2, Z +  1, Z + 2 ;  [Ecorr2(Z+1)- 
EcorrZ(Z- 1)1/2,quadratic, Z -  1 , Z , Z -  1 ;[2E,,,,,(Z+3)-9E,,,,,(Z+2)+ l8EC,,,,(Z+ 1)- 11~c,,,2(Z)l/6, 
cubic, Z, Z +  1, Z + 2 ,  2 + 3 ;  [-2E,,,,2(Z-l)-3E,,,,,(Z)+6E,,,,,(Z+l)-E,,,,2(Z+2)]/6, cubic, Z-1, 
2, Z + l ,  Z + 2 .  

Be2+ 0.008 34 0.013 7 0.009 70 0.01 1 0 0.010 1 0.010 6 0.010 4 

Since ab initio results for ucorrh.(Z) of comparable quality are unavailable for any 
other systems, the two-electron results of table A2 necessarily constitute the backbone 
of the evidence on which the preference for cubic fits to EcorrN(Z), E c o r r ~ ( Z + l ) ,  
EcorrN(Z + 2) and EcorrN(Z + 3) is based. However, this conclusion is not inconsistent 
with the comparison between the ab initio and experimentally derived ucorr4(Z) values 
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for the four-electron systems presented in table A4. The total correlation energies 
( Ecorr4(Z), table A3) were derived by adding the correlation energies ( Eco,,,(Z)) of the 
two-electron systems (table Al)  to the sum of the correlation contributions to the two 
processes 1s22s2+ ls22s and ls22s+ ls2. The methods used to extract the latter two 
contributions from experiment are described in the next section. It should be pointed 
out that the discrepancies between the ab initio and experimentally derived values of 
uCorr4(Z) for the four-electron systems are just as likely to arise from inadequacies in 
the correlated wavefunctions (Sabelli and Hinze 1969) as from deficiencies in the fitting 
procedures. 

Table A3. Total correlation energies ( Ecorm(Z)) of four-electron systems (au). 

-Corrections to 
ionisation potential Experimental I P I J  

Dirac-Fock 
IP ( I D F I T  Breit (-IBr)$ -I,§ ( L P J  -Emrr4(Z)TI 

Li- -0.004 495 0.000 001 0.000 000 0.022 785 0.072 617 
Be 0.295 677 0.000 012 0.000 004 0.342 601 0.094 333 

C2+ 1.683 190 0.000 114 0.000 060 1.759 473 0.126 047 
0.000 126 2.84.7 03 1 0.140 408 

04+ 4.083 195 0.000 380 0.000 234 4.185914 0.154 127 

t Ionisation potential for process 1s22s2+ 1 ~ ~ 2 s .  
S I,, = Breit energy of ls22s - Breit energy of ls22s2; calculated exactly. 
0 ILs= Lamb shift contribution to ionisation potential calculated as ( E -  in Is22s state)-2(ELS in ls22s2 
state) with the Lamb shift energy 
1 1  From Moore (1949) except Li- from Patterson et al (1974) with last two figures not significant. 
B Total correlation energy Ecorm(Z) = Ecorrz(Z) - Icorr~i(Z) - I,,,, + IDF+ IBr+ I ,  - I,,,,/M,, Ecorrz(Z) from 
table AI, I,,,,,,(Z) from table A5 for Li to C3+ and computed as EcorrZ(Z)-Ecorr3(Z) (tables AI and A7) 
for N4+ and Os+. Iexp,/Mn is the nuclear motion correction with M ,  the nuclear mass. 

B+ 0.861 835 0.000 048 0.000 021 0.924 41 4 0.1 1 1  344 

N3+ 2.757 231 0.000 221 

of one 2s electron calculated from (A.2). 

Table A4. Comparison between ab initio correlation contributions to nuclear shielding in 
four-electron systems with values derived from correlation energies (ppm). 

ucorr4(Z) from correlation energies; equation (A. l )  

Quadratic Cubic A6 initio uccorr4(Z) 
Linear 2, z+ 1, 2, z+ 1, 
z, Z + l t  z + 2 t  Z + 2 ,  Z + 3 t  UnscaledS Scaledl (r - ' )HF 

Li- 0.385 0.427 0.441 0.440 0.440 5.870 00 
Be 0.302 0.322 0.334 0.295 0.296 8.408 80 
B+ 0.261 0.264 0.262 0.237 0.241 10.918 65 
C2+ 0.255 0.261 0.236 0.233 13.422 69 

t Fits defined as in first footnote to table A2 with Ecori2 replaced by Ecorr4. 
$ Calculated by dividing by 3c2 the difference between correlated ( r - I )  (Sabelli and Hinze 1969) and 
presented here. 
8 Derived by multiplying correlated ( I - ' )  values by ( - E  +(T))/(2(T))  where E and (T) are the total and 
kinetic energies of the correlated wavefunction (Sabelli and Hinze 1969). This factor yields the (I-') predicted 
by this wavefunction after scaling to satisfy the virial theorem exactly. 
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The results (table 3 of the main paper) for the total shielding differences Ag(M) 
derived through ( 10) from experimental ionisation potentials also suggest that cubic 
fits to the system of interest and those of higher nuclear charge are most trustworthy. 
Thus both the quadratic and cubic, unlike the linear fits, almost exactly reproduce the 
large Hartree-Fock plus small correlation shielding differences ACT( M) .  Finally it 
should be pointed out that cubic fits involving the species of nuclear charge 2,- 1 
are possible neither for the neutral alkalis nor for the ionisation process core s +- core 
because the referenced inert-gas anions do not exist. 

A.2. Data used to derive AcT,,,,(M) results for the alkali metals 

The Dirac-Fock and experimental ionisation potentials (IM(Z)) for the removal of a 
single-valence s electron from the neutral alkalis, from the first positive ions of the 
alkaline earths, from the second positive ions of the Group IIIA elements and from 
the third positive ions of the Group IVA elements are reported in table A5. Since the 

Table A5. Correlation corrections (I,,,,,(Z)) to ionisation potentials I,(Z) for removal 
of a valence s electron (au). 

-Correction to IM(Z) Experimental IM(Z)jl 
Dirac-Fock 
IM(Z)(IDF)t Breit (-IBr)$ (I,,,,) IcorrM(Z)1 

Li 
Na 
K 
Rb 
c s  

Be+ 
w3+ 
Ca+ 
Sr+ 
Ba' 

B2+ 
AIZ+ 
sc2+ 
Y2+ 
La2+ 

c3+ 
si3+ 
Ti3+ 
zr3+ 
Ce3+ 

0.196 328 
0.182 182 
0.147 752 
0.139 655 
0.127 788 

0.666 214 
0.541 826 
0.417 268 
0.383 749 
0.344 201 

1.390 182 
1.032 206 
0.769 114 
0.693 053 
0.613 470 

2.365 976 
1.643 948 
1.195 086 
1.058 822 
0.927 598 

0.000 004 
0.000 010 
0.000 010 
0.000 013 
0.000 013 

0.000 024 
0.000 042 
0.000 039 
0.000 055 
0.000 061 

0.000 064 
0.000 095 
0.000 086 
0.000 121 
0.000 135 

0.000 134 
0.000 174 
0.000 151 
0.000 208 
0.000 232 

0.000 002 
0.000 01 7 
0.000 032 
0.000 089 
0.000 141 

0.000 0 12 
0.000 056 
0.000 092 
0.000 228 
0.000 345 

0.000 037 
0.000 119 
0.000 172 
0.000 395 
0.000 577 

0.000 086 
0.000 208 
0.000 275 
0.000 591 
0.000 837 

0.198 142 
0.188 858 
0.159 516 
0.153 508 
0.143 099 

0.669 242 
0.552 535 
0.436 260 
0.405 350 
0.367 636 

1.393 925 
1.045 469 
0.793 546 
0.719 094 
0.642 825 

2.370 104 
1.658 951 
1.223 099 
1.087 665 
0.956 229 

~~~ 

0.001 835 
0.006 708 
0.01 1 808 
0.013 956 
0.015 465 

0.003 105 
0.010 820 
0.019 129 
0.021 887 
0.023 842 

0.003 913 
0.013 498 
0.024 700 
0.026 561 
0.030 070 

0.004 456 
0.015417 
0.028 453 
0.029 649 
0.029 702 

t Ionisation potential for process core ns + core in system with nuclear charge Z and core isoelectronic with 
that of alkali metal M. 
t IBr = Total Breit energy of cation - total Breit energy of neutral. 
5 
11 From Moore (1949, 1952, 1958), except Zr from Moore (1971) and La and Ce from Martin er a1 (1978). 
All figures not significant in a few eases. 
B ICorrM(Z) = I.,,, - IDF- IBr+ E=+ I,,,,/ M , .  I,,,,/ M ,  is the nuclear motion correction with M ,  the nuclear 
mass. 

= Lamb shift energy of valence s electron calculated from (A.2). 
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ground configurations of Sc2+, Y2+, La2+, Ti3+, Zr3+ and Ce3+ contain a single-valence 
d or f electron, the experimental ionisation potentials were derived by subtracting the 
experimental d + s  or f +  s excitation energies (Moore 1949, 1952, 1958, Martin et a1 
1978) from the ionisation potentials reported by Moore (1949, 1952, 1958, 1971) and 
Martin et a1 (1978). The contributions (table A5) to the ionisation potentials which 
arise from the Breit interaction (Breit 1929, 1930) were computed exactly using the 
Oxford Dirac-Fock program (Grant et al 1976, 1980, Grant and Pyper 1976) as the 
difference between the total Breit energies of the neutral and cation Dirac-Fock 
wavefunctions. 

The very small quantum electrodynamic contributions to the ionisation potentials 
were estimated assuming that these are dominated by the valence-electron Lamb shift 
thus neglecting the difference between the quantum electrodynamic energies of the 
neutral and cation cores. The leading term in the Lamb shift energy ( E ~ ~ )  of the valence 
electron is given by (Kabir and Salpeter 1957) 

ELS = ( Vz(M)IV2 ?I Vz(M))(ln c2 - In -In 2+$)(3.rrc3)-'. (A.2) 

Here 9 is the Hartree-Fock potential experienced by the valence electron, In E is the 
Bethe logarithm (Bethe et al 1950) and Vz(M) is the spatial valence s orbital of the 
system of nuclear cbarge 2 and isoelectronic with M so that V,(Z) = Y(M). The 
quantity ( Vz(M)lV2Vl Vz(M)), which is a sum of a nuclear term ( Vz(M)IV2VnucI Vz(M)) 
with QnUc the nuclear potential plus a purely electronic part, also arises (Pyper 1980, 
Pyper and Marketos 1981) in the Darwin relativistic correction to the non-relativisti? 
valence electron energy. *Since the contribution arising from the electronic part of V2 V 
is only 1% of ( Vz(M)/V2Vnuc/ Vz(M)) except for the second and first row systems where 
thelelectronic part is 2% and 5% (Pyper and Marketos 1981), the electronic part of 
V 2  V will be neglected. The Bethe logarithm is related to the moments of the oscillator 
strength distributions (Fano and Cooper 1968) through 

In = (d In S(x)/dx),=,-ln 2. (A.3) 

These derivatives will be estimated from the linear approximation generated by the 
values of S(1) and S(2) which were computed through (Fano and Cooper 1968) 

from the Hartree-Fock wavefunctions. 
The reduced mass correction is the leading contribution to the ionisation potential 

arising from nuclear motion. Since this correction to the non-relativistic total energy 
of an atom is given by dividing this energy by the nuclear mass (Hughes and Eckart 
1930), the correction to the non-relativistic ionisation potential is just this potential 
divided by the nuclear mass. Since the relativistic and nuclear motion corrections 
constitute only a small fraction of the total ionisation potential, the mass corrections 
were calculated from the experimental ionisation potentials. 

The correlation contributions ( IcorrM(Z)) to the ionisation potentials calculated as 
the difference between the experimental results and the sum of the Dirac-Fock predic- 
tion plus nuclear motion, Breit and quantum electrodynamic corrections are presented 
in table A5. The correlation contribution (Aucorr(M)) to the alkali-atom-cation nuclear 
shielding differences predicted through (8) from linear, quadratic and cubic fits to the 
2 dependence of ZcorrM(Z) are presented in table A6. The predictions of AcCorr(M) 



1330 N C @per 

Table A6. Comparison of different methods for calculating of Aecorr(M) for the alkali 
metals (ppm) from equation (8). 

~ ~~ ~~~~ 

Auc,,,,(M) from fully corrected 
ionisation potentials$ 

Aucorr(M) from 
Quadratic, Cubic, uncorrected IPS 

Linear, 2, z+ 1, 2, z+ 1, cubic, Z, Z+  I ,  
z, z+ 1: z+2i 2 + 2 ,  2 + 3 1  z + 2 ,  z + 3  

Li 0.0225 0.0266 0.0278 0.0270 
Na 0.0730 0.0857 0.0897 0.0886 
K 0.130 0.146 0.145 0.144 
Rb 0.141 0.170 0.180 0.177 
c s  0.149 0.168 0.141 0.137 

t Fits defined as in first footnote to table A2 with Ecorrz replaced by IcorrM. 
$ Derived from IcorrM(Z) values of table A5. 
§ Derived from IcorrM(Z) values (=I,,,, - IDF) uncorrected for nuclear motion, Breit interac- 
tion or Lamb shift. Ie,,, and IDF taken from table A5. 

derived from IcorrM(Z) values which are not corrected for nuclear motion, Breit 
interaction or quantum electrodynamic effects do not differ significantly (table A6) 
from those calculated using the corrected results for IcorrM(Z). 

A.3. The correlation contributions to the shielding in three-electron atoms 

The correlation contribution ( IcorrLi(Z)) to the ionisation potential ( ILi(Z)) for the 
removal of the 2s electron in each member of the three-electron isoelectronic sequence 
was calculated as described previously. The total correlation energies of these systems 
( Ecorr3(Z), table A7) were calculated by adding to the experimentally derived values 
of IcorrLi(Z), the correlation energies (Ecorr,(Z), table A l )  of the two electron systems. 

The correlation contributions ( ccorr3(Z)) to the total nuclear shieldings derived 
from the ab initio calculations of Cooper and Martin (1963) are compared in table A8 
with the predictions calculated from (A.l)  using cubic fits to the Z dependence of 
Ecorr3(Z). For Be+ and B2+ these results differ slightly from those derived previously 
(Mehrotra and Saxena 1975) both because the present correlation energies are slightly 
different and because cubic fits to the Z dependence, which have been shown to be 

Table A7. Total correlation energies ( Ecorr3(Z)) of three-electron systemst. 

- Correction to IL,(Z) Experimental ILl(Z)  
Dirac-Fock 
IL1(Z) ( IDF) Breit (-IBr) EL3 (I,,,,) -E,,,,,(z)e 

N4+ 3.593 069 0.000 252 0.000 170 3.597 376 0.050 150 
OS+ 5.071 424 0.000 396 0.000 300 5.075 755 0.050 652 

t See first three footnotes to table A5. 
$ Total correlation energy Ecorr3(Z) = Ecorr2(Z) - Iexpl+ IDF+ IBr- - I,,,,/ M,, I,,,,/ M ,  is the nuclear 
motion correction. For Li to C3' the total correlation energies needed are given by EcorrZ(Z) - I,,,,,,(Z), 
with E,,,,,(Z) in table A1 and I,,,,,,(Z) in table A5. 
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Table A8. Comparison between ab initio correlation contributions to nuclear shielding in 
three-electron systems with values derived from correlation energies (ppm)?. 

vcorr3(Z) from correlation energies, equation (AI) 
~~ 

Quadratic, Cubic, A b  initio uwrr3(Z) 
Linear z, z+ 1, z, z+ 1, 
Z , Z + l  z + 2  z + 2 , 2 + 3  UnscaledS Scaled (r-')HF 

Li 0.0362 0.0430 0.0450 0.0362 0.0403 5.715 460 
Be+ 0.0227 0.0267 0.0286 0.0082 0.0171 7.972 338 
B2+ 0.0153 0.0172 0.0177 0.0120 0.0138 10.224 525 

?See first three footnotes to table A4 with Ecorr4 replaced by Ecorra in the first. 
't From Cooper and Martin (1963). 

most trustworthy, have been used rather than quadratic ones. Since the a b  initio 
wavefunctions do not exactly satisfy the virial theorem, scaling of these functions yields 
the improved ab initio predictions also reported. The discrepancies between the 
experimentally derived and the ab initio values for vccorr3(Z) probably arise from 
inadequacies in the.& initio wavefunctions. Indeed for Li the discrepancy (0.00026 au 
in ( r - ' ) )  is no greater than the probable error in the ab initio value as estimated from 
the difference (0.00092 au) between the scaled ab initio kinetic energy and the exact 
kinetic energy of 7.478060 (= the Hartree-Fock value plus the correlation energy 
reported in table A8). 
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