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A strong perturbation of the conduction electrons accompanying the radioactive decay of nuclei is
discussed. It is demonstrated that this effect depends strongly on recombination phenomena. A resonant
behavior of the excitation process as a function of temperature is predicted.
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Recently some interest has been shown in atomic-
nuclear phenomena. It is well known that the use of unsta-
ble nuclei as a probe provides a powerful tool to study local
properties of materials. We consider in this Letter the spa-
tial dependence and gross properties of condensed matter
electron bulk excitation caused by a decay process. The
method discussed here is quite general, and it can be ap-
plied to study other time dependent phenomena connected
with the valence electron excitations, such as photoabsorp-
tion and stopping power [1]. However, as we show below,
probing the electronic structure of matter by radioactive de-
cay is particularly sensitive to the correlation effects in a
local region. For instance, it can be employed in order to
understand the role of different elements in superconduct-
ing ceramics. At the same time, the use of unstable nuclei
can have some advantages, for example, with respect to
the implantation problem, since the following radioactive
transition can give direct information about the position of
implanted ions and solid structure. Furthermore, the time
dependent electric field of a decaying radioactive element
can considerably modify the local electronic properties.
For example, the decay can modify the critical tempera-
ture for the transition from amorphous to the crystalline
phase or for the defect annealing process [2], similar to
what is observed in experiments with laser or ion beams
[3]. Especially in the cases of internal conversion or K
capture, the radiative and Auger deexcitations of internal
shell vacancies give ions with a large charge Z, = 10—20
[4] (¢ = m, = K = 1). These ions can yield also a strong
electron emission from the solids [5].

The time dependence of the ion charge at radioactive
processes can be approximated as

exp(t/7,) forr <O,
exp(—1t/7w.) fort >0,

(1)

where 7, is the time for the Auger cascade, while 7. is
the recombination time.

The dynamics of the valence electrons in this external
field can be considered within the semiclassical kinetic
theory [6]. Then for the time dependent phase-space
distribution function of the electrons f (7, p; ) we have

Z(t) = Zy X {

gy = ST H = Ho+ 2@V R = 7 D),
@
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where R is the coordinate of the ion, V(r) =
exp(—r/rp)/r is the screened Coulomb potential,
rp is the Debye radius, and Hy(7,p) = U(¥) + p?/2 is
the unperturbed Hamiltonian with a self-consistent mean
field U(#). St[ f] is the collisional term which simulates
the correlation effects in semiclassical electron dynamics.
This approximation corresponds to the Thomas-Fermi
model (& — 0) for the electron gas (see [7—10]), with
respect to the Hartree self-consistent mean field equations
in quantum mechanics.

We use perturbation theory (pt) for our estimations
and separate the actual distribution function of the elec-
trons into stationary and time dependent parts, f(7, p; 1) =
fo(F,p) + 8f (7, pst). Here fo(F,p) = fo(Ho(7, p)) is the
Thomas-Fermi (£ — 0) unperturbed distribution function,
which in the zero temperature limit is given by fo(Hy) =
(27)7320(er — Hy), where 6(x) is the theta function, and
er is the Fermi energy of the valence electron gas. Ne-
glecting correlation effects (St[ f]), which are reasonably
small for a strongly degenerate electron gas in the low
temperature limit because of Pauli blocking (zero sound
regime [6,8,11]), we obtain, with linear accuracy, the fol-
lowing expression for the distant dependent excitation
strength (see, for example, [12]):

P(r,e) = (277)‘1f dtdp 8f(r,p;t)e '’

- 2e(rl + 7,1)?
O(r=2 + €?) (772 + €2)

rec

S(r,e), ()
where r is the distance from the radioactive nucleus, and

S(r,e) = (277)71[ dt C(r,ep,t)exp(—ier), (4)

C(r,E,t) = (277)*3[ dp S[E — Ho(7,p)]

X V(I R=FNDVAIR=F()I]). (5

Here 7(¢) is a point in coordinate space that belongs to a
classical trajectory governed by the Hamiltonian Ho(7, p ),
with initial conditions {7, p }. We have used the following
expression for the Fourier transform (Z.) of the time
dependent charge (1):

Ze = Zo[(r, + i) + (ree —i0) '] (©)
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For metals we can use a free electron approximation
neglecting the gradients of the mean field U(r). Then,
since 7 (1) = ¥ + pt, we obtain the distant dependent
strength function S.(r, €) in the following form:

PoF@E), with =r/rp, €= e/e,

Se = (mr)?

F(Z,€) =j;) dx cos(£x)

><eXp(~I{~x|)‘e><p(‘|£erl)
. ,

(7

where €y = vp/rp = \/§ep, €, is the plasma frequency,
and vy = (2€x)'/2. Figure 1 shows the function F(¢, &).
We see that the considered process gives a strong per-
turbation of the valence electrons close to the radioactive
nucleus volume with linear size AR = 8rp.

To estimate the power of this effect we consider the
energy moment,

2
(e¥y = f d7 de €*P(r,€) = (M)

Tap

X 2«56‘”(7’7l + T;l)zlk, (8)

rec

dx xk+l

= | 2T (o) 212 + (@r) 2 + 1)

that gives the total number of excited electrons (k = 0,
N = (")), mean excitation energy (k = 1), etc. The first
three moments are written in the following form:

2
ZOrD Ty + Trec
Tap

Ny = <60> = 2<

Ty = Trec

In(ep7rec)

]n(E()TU)
. (1 - (GOTU)72 - 1 - (607rec)2), (9)

2 2
(e = (Zoro) € Ty + Trec ’ (10)
ag T (1 + EOTu)(l + €0Trec)
2
Zor Ty + Trec
(€?) = 2( 0 D) €
mag Tv = Trec

In(eo7,) _ In(€oTrec)
% ((GOTU)2 =1 (€0Trec)? — 1) ab

Since for realistic cases the relations

€pTrec > 1 and €,7, ~ 1

are fulfilled, the energy dependence of the excitation
spectrum is determined by the second term on the right
hand side of Eq. (3). We evaluate the values {e*) (9),
(10), and (11) in a simple way as

2 21n(egTec)
(e*y = (@) X { 77'20

ma 2
B 250 IH(EQ Trec)

1 fork =0,
O0.le, fork =1, (12)

36,2, for k = 2.

~ Z5 X

Il

Thus we see that this effect is very large and can modify
considerably the material properties locally.

To estimate the accuracy of pt with respect to this
problem we consider numerical simulations of the semi-
classical electron dynamics in the external field V(z) [see
Eq. (2)], using the test-particles (TP) method [9,10]. The
case of the infinite matter is simulated using the peri-
odic boundary conditions for the considered volume. In
our calculations this volume corresponds to 64 atoms of
Al with total number of conduction electrons A, = 192.
In Fig. 2 we compare the results of the numerical sim-
ulations and Eq. (10) for Al. We see good quantitative

FIG. 1.

The function F({, &) versus excitation energy and distance from a radioactive nucleus.
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agreement for the wide region of parameter Z; up to value
Z8 =~ €9Trec > 1.

It is not surprising that pt works rather well for the
description of the considered process. The application of
pt is generally restricted by the condition

Se.Jer < 1, (13)

where Se€, is the energy that is absorbed by an electron
from the external field. This value (§€,) can be estimated
as

_ V)

563 —_5tinl’

at (14)

where 8¢, is the interaction time being in the order of
magnitude of 8t;n = €o ' The potential of the external
field ((V)) averaged over the spatial electron density (p) is
estimated as (V) = 4w prpZoexp(—t/7). Using Egs. (13)
and (14) we obtain the relation Z; < €g7.

At finite temperature (7') of the system, correlation
effects, reflecting the inexactness of the Hartree method
and associated with the deviation of the true interaction
from the self-consistent (averaged) one (U), become
important. The correlation as well as thermodynamic
fluctuation effects can be included in this semiclassical
independent-particle picture of fermionic dynamics in a
phenomenological way using the Langevin equation of
motion (see [5,11,13]),

Pty ==V, p) + F0),

where }(t) is a Gaussian random force associated with
the mean field fluctuations. This additional force always
arises whenever we deal with a reduced description of a
system, and it simulates the coupling of the degrees of
freedom, which are not explicitly considered. Neglecting
memory effects we assume that the equilibrium correlation

5)
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FIG. 2. The mean excitation energy ({e')) in Al versus

parameter Zy. The results of numerical simulations (see text)
are given for 7. = 10 au. (O) and 7. = 30 a.u. (X), while
—— is an analytical estimation [see Eq. (10)].
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function of f(t) is a delta function,

(FOF()) = 2D;8(t — ). (16)

The fluctuation properties of the mean field are related
to the dissipation properties through the fluctuation-
dissipation theorem. In the case of small fluctuations
around equilibrium we can use the well-known (see
[11,13]) result Dy = nhwcoth(fiwy/2T), where wy is the
lattice phonon frequency and 7 is the friction coefficient,
which can be practically estimated from the conductivity.
Since the Langevin equation of motion is not integrable
we define the probability p (7, 7;¢) of finding an electron
with initial conditions {7, p } at the point 7, at the time ¢.
Then the correlation function C(r, E, t) can be written as

Cr E1) = j 1 dp S(E — Ho(F 7))

X 2m) Pp(FL B )Vl R—F DV R =7 1).
a7

In the case of white noise random forces, e.g., (16), the
probability p (7, 7;¢) is given, for infinite matter, by the
Gaussian distribution function (see [14]),

p(F1,751) = exp{—[F — 7 ()P/D,1}/(=D,1)*?,  (18)
with spatial diffusion coefficient D, = n~2D;. Thus
using Eqgs. (17) and (18) we can write for the temperature
dependent strength function [see Eq. (4)] integrated over
the distance from the radioactive nucleus the following
equation:
(”D)2 21-1/2
~ =21 +

Sy(e) (ﬂaB)Z[l (ve/€0)]
a+y/d+ @+ Dia[y(y — 1)/2 + a] — 1}
(I = y/4? +(a®> — 1) 2a/y)? '
(19

where a? = 0.5{1 + [1 + (ye/€y)?]"/?}. The parameter
vy = D,/vprp indicates the ratio of correlation and inter-
action lengths. The zero temperature limit in absence of
zero point lattice vibrations (% — 0) can be obtained from
the last equation putting y — 0 (see [5]). Figure 3 shows
the excitation strength P, (€) versus excitation energy and
temperature for some realistic cases. We see that at small
temperature the excitation spectrum in the low energy re-
gion is very sensitive to the recombination processes. At
the same time P,(e) is practically independent from the
time 7, for the Auger cascade.

Since, for realistic cases, the main contribution to the
excitation spectrum comes from the energy interval € ~
ol < €, [see Eq. (3) and Fig. 3], we can estimate the

rec
moments of energy at finite temperature as

1 —3y/4 + y%/2
(1r - ')’/4)2 + (€0Trec) 2 ’

(€")y = (") (20)
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FIG. 3. The function 5525 P (e) versus excitation energy

(€) and temperature (y = D, /uprp) for cases €7, = 0.3 and
€0Trec = 10 (a), 100 (b).

where (€*), are corresponding values in the zero tempera-
ture limit given by Egs. (9), (10), and (12).

From Eq. (20) we can see that the electron bulk excita-
tion process has a resonant behavior, with a resonance at a
temperature 7, = 4vprpn (Fig. 4). The correlation length
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FIG. 4. Temperature (y = D,/vrrp) dependence of the total
number of excited electrons for eg7.. = 30 (full line), 10
(dashed), and 3 (dotted).
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in medium becomes comparable with the interaction length
at this condition. The total number of excited electrons
is very large at this temperature: Ny = 6No(€0Trec)> ~
10*—10° per radiative transition.

An experimental study of the process considered here
would be very interesting. Especially, experiments where
coincidences between conversion and low energy elec-
trons are measured could give information, for example,
about the emission depth. On the other hand, the reso-
nant behavior of the excitation process predicted here can
give some curious surprises, such as an anomalous tem-
perature and concentration dependence of the radioactivity
rates (see [15]).
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