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Abstract 

We compare the electron densities and Hartree potentials in the local 
density and the Hartree-Fock approximations to the Corresponding 
quantities obtained from more accurate correlated wavefunctions. The 
comparison is made for a number of twoelectron atoms, Li, and for 
Be. The Hartree-Fock approximation is more accurate than the local 
density approximation within the Is shell and for the spin polarization 
in Li, while the local density approximation is slightly better than the 
Hartree-Fock approximation for charge densities in the 2s shell. The 
inaccuracy of the Hartree-Fock and local density approximations to the 
Hartree potential is substantially smaller than the inaccuracy of the local 
density approximation to the ground-state exchangecorrelation potential. 

1. Introduction 

For atoms and for molecules of moderate size, configuration 
interaction (CI) offers a powerful method for obtaining accurate 
solutions to the many-electron problem [l]. Both the ground 
state and the excited states can be treated by this method. For 
the lightest atoms such as He and Li very accurate results have 
been obtained using Hylleraas-type wavefunctions [ l ]  , but this 
method is not tractable for larger systems. For solids on the 
other hand, methods like CI involve conceptual and practical 
problems which have so far not been solved. 

For systems with a macroscopic number of particles such as 
solids, one usually resorts to field-theoretical formulations of 
the many-body problem in order to obtain excitation energies. 
Ground-state properties, such as the ground state energy, the 
electron density, or vibrational frequencies, can be obtained 
using the simpler density functional theory by Hohenberg, 
Kohn, and Sham [2 ,3] .  In most applications of the density- 
functional theory the local density (LD) approximation is used, 
where one approximates the universal exchange-correlation 
functional E,, by 

Here ex,@) is the exchange-correlation energy of the homo- 
geneous electron gas at density p .  This approximation is exact 
in the limit of very slowly varying densities but it has no a priori 
justification when the density is as rapidly varying as it is in a 
real atom, molecule or solid. A great number of calculations have 
demonstrated, however, that this approximation is able to give 
quantitative or semiquantitative results for such systems [4]. 

Both for obtaining ground-state properties and for obtaining 
excitation energies it is of importance to have an accurately 
determined electronic charge density p(r). For an atom or a 
molecule, this can be obtained using e.g. CI, but for a solid the 
LD approximation is the most widely used method. There are 
however also a number of Hartree-Fock (HF) studies, mostly 

for ionic solids. The density determines the electrostatic or 
Hartree potential 

VH(r) = p(r’)v(r - r’) d3r’ (2) 

[ - i V z + w +  VH+Z(Ei)Ixi(Ei) = EiXi(Ei) (3) 

which is a dominating term in the Dyson’s equation 

for the excitation energies of the system. (In eq. (2) v(r) = l/r 
is the interparticle interaction, in eq. (3) w is the external 
potential from the nuclei, Z(E)  is the non-local and non- 
Hermitian self-energy, and x i Q  is a quasiparticle amplitude. 
We use atomic units such that h = e2 = m = 1 .) In a ground-state 
calculation the density gives the total electronic electrostatic 
energy (1 / 2 )  J p VH d3r, a term which is normally much larger 
than the exchange-correlation energy. It would be of limited 
value to improve the approximations for the self-energy or for 
the exchange-correlation energy if the dominating error due to 
a poor p (r) lies in VH. 

The aim of the present paper is to give a comparison between 
charge densities and Hartree potentials in the Hartree-Fock 
and local density approximations and the corresponding exact 
quantities for systems where these exact quantities are available. 
A study of total energies of two-electron systems in local- 
density-type approximations and their accuracy has been made 
by Larsson and Calais [5], and a study for the He atom has been 
presented by Smith et al. [6]. The systems that we have studied 
are the twoelectron systems H-, He, Li’, and Be2+; one three- 
electron system (Li), and one four-electron system (Be). Given 
the exact densities it is also possible to construct the exact 
ground-state exchange-correlation potential vxc(r). How this 
is done will be described in a subsequent paper [7]. The corre- 
lated densities we have used were calculated by Larsson [8], 
Larsson and Smith [9], and by Bunge [ 101. In the next section 
we describe some details’ of the calculation, in Section 3 we 
present the numerical results, and in Section 4 we give our 
conclusions. 

2. Details of the calculations 

The correlated densities for H-, He, Li+ [8] and for Li [9] 
were constructed from wavefunctions of Hylleraas form. The 
accuracy of the Li wavefunction [9] we used is not as good as, 
e.g., that from an earlier calculation by Larsson [ l l ] ,  but the 
latter wavefunction or the program for recomputing it is no  
longer available. The total energy and the value of the spin 
densities at the nucleus of the wavefunction in [9] suggest, 
however, that the data are of high enough accuracy for our 
purpose. The wavefunctions for Be2+ and Be were calculated 
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where fix,@) = d@e,,)/dp. We recall that the orbitals $i and 
eigenvalues are just auxiliary quantities used for constructing 
p(r) and the total energy and that they normally do not have 
any clear physical meaning of their own [ 131. 

formalism one approximates E,, by 
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where p' are local spin densities, p = p+  + p - ,  and E,, is the 
exchange-correlation energy of the spin-polarized electron 
gas. The exchange-correlation potential is in this case spin- 
dependent and a function of the local spin densities: 

The exchange-correlation energies needed in the LD calcu- 
lations were obtained by parametrizing the Monte-Carlo result 
by Ceperley and by Ceperley and Alder [ 151 An earlier para- 
metrization (see Williams and von Barth [ 4 ] )  based on electron 
gas data by Singwi et al. [16] was also used and gave very 
similar density profiles. 

We conclude this section by some remarks in the H- case. 
Here the HF and LD approximations fail, in two different ways. 
We denote the total HF and LD energies byEHF(a) andELD(n), 
n being a (possibly fractional) occupation number. For H and 
H-, E H F ( ~ )  = - 0.5 a.u. and EHF(2) = - 0.4879 a.u. The H- 
ion is thus unstable in the Hartree-Fock approximation. The 
HF Is energy eigenvalue is negative, however, and a restricted 
HF solution with correct boundary condition can be obtained. 

i 
f 

' O i  i 

1 2 '<r) 

Fig. 1. The relative charge density difference Ap/pexact for H-, He, 
Lit, and Be'*. Ap = ~ H F , L D  -pexact The radial charge density 4nprz 
(dotted) is also shown. The distance from the nucleus is measured in 
units of the first moment ( r ) ,  where ( r )  is given in Table 111. 
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3. Numerical results 5 
r 1a.u I 

1 2 3 4 

In Figs, 1-3 we show the relative charge density differences 2. The relative charge density difference AP/Pexact for the neutral 
Be atom. The radial charge density 4npP (dotted) is also shown. Atomic 
units. Ap/pexact where Ap = PHF,LD - pexact in an obvious notation. 

The charge density p(0)  at the nucleus is given in Table 11. For 
the two-electron systems He, Li+ and Be2+, HF gives densities 
very close to the exact densities. The LD approximation is not 
as good, giving relative deviations of the order 3% in regions 
with an appreciable particle density. Far out from the nucleus, 
the LD approximation gives densities which are too high. This 
may be due to the fact that the exact v,&) - - l / r  - a/(2r4), 
when r + 00 [ 141, while in the LD v,, = pxc@ (r)) - exp (- Ar), 
r + -. For H- the finite-atom LD calculations gives a density 
which is slightly better than that obtained from HF theory. 

In Table I11 we give moments ( r )  = j" p(r)r  d3r/$ p ( r )  d3r. 
These moments give primarily information on the outer part 
of the atom. For the two-electron atoms He, Li', and Be2+ 
the Hartree-Fock moments are almost indistinguishable from 
the exact ones, while the LD moments are generally too large. 
The difference between the LD and the exact moments is also 
probably a consequence of the incorrect asymptotic behavior 
of the local-density approximation to vxc .  

We next turn to the four-electron system (Be) (Fig. 2). 
Within the 1s shell the HF density is very close to the exact 
density, while the LD approximation is less accurate (Ap/  
p-0.03) (cf. also Table 11). In the valence-electron region, 
however, the roles are reversed. Here the LD approximation 
still gives lAp/p I hr 0.03, while HF theory gives deviations 
about twice as big. In the valence-electron region correlation 
plays a more important role which explains why the HF 
approximation is less accurate. On the other hand the density 
is less rapidly varying and thus one expects that the LD approxi- 
mation should work better. A related result has been obtained 
by von Barth [ 181, who found that for valence-electron shells 
the LD term splittings are more accurate than those obtained 

Table 111. Expectation values of r. For Li, partial expectation 
values corresponding to the two different spin directions (+, -) 
are also given 

Atom Exact HF 
- 

LD 

H-  2.71 2.50 
He 0.929 0.927 0.959 
Li+ 0.573 0.572 0.585 
Bea+ 0.4143 0.4141 0.4207 

+ 2.22 2.22 2.21 
Li - 0.58 0.57 0.59 

av. 1.67 1.67 1.67 

Be 1.4 94 1.532 1.522 

using HF theory. Table I11 shows that for Be, HF and LD 
approximations give moments of about the same accuracy. 

In Fig. 3 we show the relative deviation in charge density 
and the deviation in "spin-split parameter" x = (p' - p-)/p 
for the neutral Li atom. Also in this case HF in the Is region 
gives densities which are more accurate than the LD densities. 
At the density minimum between the Is and 2s shells, the 
deviations reach their maxima both for HF and LD. The devi- 
ation in spin-split parameter ( x )  is for LD quite big here. The 
reason is that the LD Is orbital is too extendsd, and thus 
x(r)  reaches its valenceelectron value (= 1) at a slightly in- 
correct distance from the nucleus. In the valence-electron 
regime, the LD densities are comparable in accuracy to the 
HF densities. The moments ( r )  in Table I11 show no significant 
difference in accuracy between HF and LD approximations. 

In Table IV we give values for the Fermi contact term 
4n@+(O) - p-(0))  from the correlated wave function used in 
our comparison [9], the more accurate one in [ 1 I] ,  LD, HF, 
and from experiment. The inaccuracy in the data from [9] 
is insignificant compared to  the HF and LD inaccuracies. For 
the Fermi contact term LD theory gives a slightly better value 
than does (un-restricted) HF theory, but on an average HF 
is more accurate than LD in the Is shell (Fig. 3). 

We finally turn to the Hartree potentials VH calculated 
from the exact, HF, and LD densities. We have found that 
HF is superior to LD in the 1s shell, while LD is as good as or 
slightly better than HF in the valence-electron region. It follows 
from elementary electrostatics that an inaccuracy in p within 
the Is shell has little influence on the Hartree potential outside 
that shell. Consequently we expect that when we consider 
expectation values of VH with respect to a valence-electron 
orbital, LD should be as good as or better than HF. 

In Table V we give expectation values ( i  I VH li) of VH calcu- 
lated from the exact, HF, and LD densities. For definiteness 
we give expectation values with respect to HF orbitals li). 
When we consider (Is I VH I Is), the Hartree-Fock approximation 

Table IV. The Fermi contact rem 4n(p+(O) - p-(0))  for Li 

Correlated HF LD Experiment 

2.915" 2.823 2.861 2.906' 
2.906b 

" Computed from natural orbitals given in [ 91. 
Ref. [ l l ] .  
See Ref. [ l l ] .  
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4. Conclusions 

In this paper we have compared charge densities and Hartree 
potentials for light atoms in the LD and HF approximation 
with the corresponding exact quantities. It appears to be a 
general belief that HF gives better densities than does the LD 
approximation, at least for atoms. For the atoms studied here 
this is true only within the Is shell, while for Li and Be the LD 
approximation is as good as or slightly better than the HF 
approximation in the 2s shell. 

As a measure of the uncertainty in the Hartree potential 
VH due to the uncertainty in p ,  we have considered expec- 
tation values (iIV,li) with respect to HF orbitals li). For a 
given valenceelectron orbital li), the LD and HF approxi- 
mations give uncertainties in (i I VH li) of the order milliHartrees, 
which is substantially smaller than the error in the local-density 
approximation to vxc.  It seems likely that the theoretical 
uncertainties in the common approximation to the self-energy 
E also are larger than the very small uncertainty in the Hartree 

to solid state or molecular calculations, but our findings give an 

potential. 
It is of course difficult to extrapolate the present experience 
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