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Irganox 3114 was identified in all three extracts, based on the 
quasimolecular ions observed in the positive ion spectra and 
fragment ions in the negative ion spectra. Naugard 524 is 
believed to be present based on a fragment in the negative 
ion spectrum, which was determined by exact mass mea- 
surement to be a reasonable oxidation/hydrolysis product of 
Naugard 524, and the presence in the positive ion spectrum 
of quasimolecular ions corresponding to the phosphate oxi- 
dation product of Naugard 524. DSTDP is tentatively iden- 
tified in the tarp extract. A database containing molecular 
weights of likely additives would be very useful, since most 
additives were found to give strong quasimolecular ions under 
defocused laser desorption conditions. While reference spectra 
are not needed, they can provide strong confirmation of an 
additive identity through fragment ion information. 
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Precise Relative Ion Abundances from Fourier Transform Ion 
Cyclotron Resonance Magnitude-Mode Mass Spectra 
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The area under a correctly phased absorption-mode spectral 
peak is a direct measure of the number of oscillators (ions, 
spins, molecules) in Fourier transform spectrometry (ion cy- 
clotron resonance, magnetic resonance, interferometry ab- 
sorbance). However, phase correction can prove difficult 
when (as in broad-band Fourier transform ion cyclotron res- 
onance (FT/ICR)) detection is considerably time-delayed 
after excitation. I n  the absence of nobe, Huang, Rempel, and 
Gross showed that a "complex area" method yields the 
correct absorption-mode peak area, for an unphased noise- 
less spectrum. I n  this paper, we show that the number of 
oscillators may also be obtained from a least-squares fit to 
a magnitudemode (Le., phase-lmlependent) spectrum. I n  the 
presence of noise and in the absence of peak overlap, the 
magnitude-mode method offers precision superior to that 
based on magnitude-mode peak height, "complex area", or 
even direct digital integration of a Correctly phased absorp- 
tion-mode peak, as demonstrated by both theoretical deriva- 
tion and experimental FT/ICR results. The present method 
thus appears to offer the best available determination of the 
relative abundances of ions of different mass-to-charge ratio 
in FT/ICR mass spectrometry. 

INTRODUCTION 
One of the most fundamental uses of Fourier transform 

(FT) spectroscopy is to determine the relative numbers of 

* To whom correspondence should be addressed. 
l Also a member of the Department of Biochemistry. 

different species from relative spectral peak "intensities". 
Most FT spectroscopists use absorption-mode spectral peak 
height as a measure of the number of oscillators a t  that fre- 
quency. [In FT/interferometry, the detector measures light 
energy, not its electric field. However, because of the (non- 
h e a r )  square-law detection process, an F T  of an interferogram 
nevertheless yields a complex intensity spectrum which when 
correctly phased yields absorption-mode and dispersion-mode 
(not "power") spectra ( I ) . ]  Unfortunately, relative oscillator 
abundances are related to relative peak heights only if all 
spectral peaks have identical widths. In a frequency-domain 
spectrum obtained by discrete Fourier transformation (FFT) 
of the time-domain response immediately following a delta- 
function excitation, the absorption-mode spectral peak relative 
areas are directly proportional to the time-domain relative 
initial amplitudes of the time-domain sinusoidal signals, which 
in turn are proportional to the numbers of oscillators a t  those 
frequencies ( I ) .  In other words, one should use FT absorp- 
tion-mode spectral peak areas rather than peak heights as 
the proper measure of relative abundances of spectral com- 
ponents. 

However, it is not always possible to phase-correct a com- 
plex FT spectrum to obtain its pure absorption-mode com- 
ponent. For example, when the time-domain detection must 
be delayed by more than half of one sampling period after 
excitation (e.g., to avoid feed-through of the excitation signal 
into the detector channel), then the failure of the FFT al- 
gorithm to accommodate a phase variation of more than 2.?r 
radians throughout the spectral range results in FFT spectral 
phase discontinuities ["phase-wrap" (I, 2)] which produce 
unavoidable auxiliary "wiggles" in each spectral peak, even 
for a perfectly phased spectrum. The phase-wrap "wiggles" 
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by least-squares fit to an absorption-mode or magnitude-mode 
spectrum is proportional to the frequency-domain signal-to- 
noise ratio (SNR) and to the square root of the number of data 
points ( K )  per line width (23) 

have the same form as those from “Gibb’s oscillations” re- 
sulting from truncation of a time-domain exponentially 
damped sinusoid before FFT, but the “phase-wrap” effect is 
unique to the discrete FT, whereas “Gibb’s oscillations” are 
present even in analog FT of a continuous time-domain signal 
(1,2). Other instrumental anomalies can produce nonlinear 
phase shift as a function of frequency. In such cases, the 
phase-independent magnitude-mode spectral display is usually 
preferred. 

Unfortunately, even in the absence of peak overlap (which 
is more pronounced for magnitude-mode than for absorp- 
tion-mode display), magnitude-mode peak height is not a good 
measure of relative oscillator abundances since peak widths 
commonly vary significantly. Moreover, magnitude-mode 
peak area is unsuitable, because (a) if the domain of inte- 
gration is extended to infinity, magnitude-mode peak area 
diverges to infinity for a simple Lorentz line shape (3), and 
(b) if the domain of integration is truncated to a finite fre- 
quency range, then the relative peak areas will be accurate 
only if all of the peak widths are the same. Thus, directly 
integrated magnitude-mode peak relative areas offer a poor 
measure of relative oscillator abundances. 

Although three-point interpolation of a noiseless magni- 
tude-mode FT spectrum can yield the frequency of the peak 
maximum exactly (4,5),  the peak height and area are not so 
easily estimated, and both estimates are corrupted by noise 
(6, 7). In addition, the apparent frequency and height of a 
magnitude-mode peak can be shifted significantly by the 
presence of nearby peaks, to a greater extent than for ab- 
sorption-mode spectra (because of the dispersion-mode con- 
tribution to the magnitude-mode spectrum) (8, 9). 

Another set of difficulties with magnitude-mode display 
relates to the nature of magnitude-mode noise. First, since 
magnitude-mode noise is everywhere positive-valued, noise 
can quickly overwhelm the signal if the peak area computation 
is extended very far away from the center of the magni- 
tude-mode spectral peak. Furthermore, magnitude-mode 
noise (in the absence of signal) follows a Rayleigh rather than 
Gaussian distribution (10). Moreover, magnitude-mode noise 
contributes only positive errors in spectral segments containing 
no signal (Le., “base line”) but contributes both positive and 
negative errors in spectral segments where signals (i.e., 
“peaks”) are present. In work to be reported separately, 
statistical criteria used to analyze the noise in signal-containing 
segments of a magnitude-mode spectrum show that such noise 
is not well-described by a Rayleigh distribution (11). 

In an effort to circumvent the problems posed by magni- 
tude-mode spectral analysis, Huang, Rempel, and Gross 
proposed a “complex area” method, to calculate the absorption 
peak area from unphased (noiseless) spectra (12). Alterna- 
tively, comparison of FT spectra of partial segments of a 
discrete time-domain signal (13,141 also provides a means for 
correcting for spectral peak height variations due to differences 
in peak width. Noest and Kort (15) have suggested a time- 
domain apodization function designed to produce spectral 
peaks with broad and flat peak maxima, to reduce errors due 
to discrete sampling. The value of linear prediction (16) 
and/or maximum-entropy methods for analysis of FT/ICR 
mass spectra is discussed elsewhere (1 7). Apparent relative 
abundances of ions in FT/ICR can of course also be affected 
by various experimental factors, including z-axis ejection 
(18-20), collisional relaxation of ions to the center of the ion 
trap (21), incomplete ejection of unwanted ions (21), and phase 
and amplitude errors (22). 

Under quite general conditions (white noise whose root- 
mean-square magnitude is independent of signal magnitude), 
we have shown that the precision of a determination of 
spectral peak height, peak width, or peak center frequency 

in which ai is the spectral peak height, peak width, or peak 
center frequency and c(ai) is a line shape-dependent constant 
factor. 

We begin this paper by extending that treatment to show 
that the precision of the number of oscillators determined by 
least-squares fit to a magnitude-mode spectrum (or by digital 
integration of the absorption spectrum, or by the above-cited 
complex area method) is also proportional to SNR and * I 2 ,  
with an appropriate value of c(aJ in eq 1. By comparing the 
proportionality constants, c(ai), we are then able to evaluate 
the relative precision of each of the above methods for peak 
area determination. Finally, we compare simulated and ex- 
perimental FT/ICR spectra to demonstrate the validity of our 
analysis. [We shall report separately on the closely related 
problem of precision in determination of the same parameters 
(peak height, width, frequency, and number of oscillators) 
from a discrete time-domain signal, including the effect of 
time-domain zero-filling (11).] 

THEORY 
Magnitude-Mode Noise. Magnitude-mode spectral noise 

differs fundamentally from noise in absorption-mode or dis- 
persion-mode spectra. Although noise in signal-free segments 
of a magnitude-mode spectrum follows a Rayleigh distribution 
( lo) ,  magnitude-mode noise a t  or near peaks more than 2 
standard deviations above the base line is more nearly 
Gaussian-distributed (11). In a separate paper, we shall 
discuss magnitude-mode noise in detail, and show that a 
least-squares fit to a magnitude-mode spectral peak may be 
performed with high precision under the assumption that the 
noise in the vicinity of the peak is Gaussian-distributed about 
a zero mean value (11). 

Precision of Peak Area Measurements. 1. Least- 
Squares Fit to a Frequency-Domain Spectrum. The number 
of oscillators can be determined by numerical integration (of 
either a phased absorption-mode peak or “complex area” (12)) 
or from a least-squares fits to either the absorption-mode peak 
or magnitude-mode spectrum. In any case, we begin from the 
absorption-mode, Abs(v), and magnitude-mode, Mag(u), 
Lorentzian frequency-domain spectra corresponding to the 
Fourier transform of an unapodized time-domain exponen- 
tially damped sinusoid, f(t) 

( 2 )  f ( t )  = No exp(-t/T) sin ( 2 7 u O t )  

(3) 

(4) 

in which u = P m ( v  - uo); No is the time-domain signal initial 
magnitude, which is proportional to the number of ions having 
that ICR frequency; No14 is the area under the Lorentzian 
absorption-mode spectra peak; Nor/2 is the Lorentzian ab- 
sorption-mode peak height; T = 1 / r  A U , ~ ~ ,  time-domain ICR 
signal damping constant (see eq 2); P v l I 2  is the absorption- 
mode full peak width at  half maximum peak height; and vo 
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is the ICR frequency, the frequency a t  the absorption-mode 
or magnitude-mode peak maximum. 

The object of this paper is to be able to predict, from a 
single FT magnitude-mode spectrum, the precision of the 
determined number of oscillators (i.e., a measure of the range 
of values that would have been obtained from a large number 
of such measurements). Precision, P(No), in determination 
of number of oscillators may be defined as the reciprocal of 
the relative standard error 

P(No) = N o / d N o )  (5) 

in which u(No) is the standard deviation that would be ob- 
tained from many independent determinations of No. If the 
absorption-mode spectral noise is “white” (i.e., independent 
of frequency) and independent of signal (i.e., “detector- 
limited”) and if the time- and frequency-scales are perfectly 
precise (i.e., noise is present only in the ordinate, not in the 
abscissa), then the precision, P(ai),  in a determination of 
spectral parameter, ai, from a least-squares fit of the spectrum 
to a given line shape can be shown to be (23) 

P(ai) = c(aJ ( S N R ) W 2  (1) 

in which c(ai) is a line-shape-dependent constant, K is the 
number of data points per (full) line width at  half-maximum 
peak height, and SNR is the spectral signal-to-noise ratio, 
which for Lorentzian line shape takes the form 

SNR = No7/2U (6) 

in which u is the standard deviation of the absorption-mode 
spectral base-line noise. 

Reference 23 presents a general method for deriving c(aJ 
for ai = uo, peak height, or peak width, for Lorentzian or 
Gaussian absorption-mode and magnitude-mode spectra. In 
this work, we have applied that method to three-parameter 
(No, u0, and T )  least-squares fits to Lorentzian absorption-mode 
and magnitude-mode line shapes to yield 

for Lorentzian absorption-mode line shape and 

for Lorentzian magnitude-mode line shape. 
In the special case that T is known accurately (e.g., from 

measurement of the width of a peak of high SNR in a spec- 
trum for which all of the peaks have the same line width), then 
it can be shown that the resulting precision in a two-parameter 
(No and uo) least-squares determination of No increases by 
a factor of 2lI2 for an absorption-mode and 3lI2 for a mag- 
nitude-mode Lorentzian, compared to a three-parameter fit 
(No, uo, and 7) .  

Finally, it is worth noting that because the magnitude-mode 
Lorentzian line width (at half-maximum peak height) is 
broader than the absorption-mode Lorentzian line width by 
a factor of 3l1*, the number of data points per line width 
increases by 3lI2 and the precision as defined above therefore 
increases by K1IZ = 3lI4 for magnitude-mode. Therefore, if 
we choose to express K as number of points per frequency 
increment rather than number of points per line width (to 
facilitate comparison of absorption-mode and magnitude-mode 
precision), then C(N0) for magnitude-mode fits should be 
increased by the factor 3lI4 (see below). 

2. Digital Integration of a Phase-Corrected Absorption- 
Mode Spectral Peak. From the standpoint of precision, a 
numerical integration (independent of algorithm) of an ab- 
sorption-mode spectrum is equivalent to summing up all of 

the absorption values within the integral limit and multiplying 
by the discrete frequency interval, Au, between successive 
frequency-domain absorption-mode data. Therefore, the 
deviation, 6, in such an integral is defined by 

n n 

i=O i=O 
6 = [Abs(vi) + N ( u ~ ) ]  AU - Abs(vi) AU 

n 
= N(ui)Au 

i = O  

in which Abs(ui) and N(ui) are the (absorption-mode) signal 
and noise values at  (discrete) frequency ui, and noise is as- 
sumed independent of signal. 6 is normally distributed with 
zero mean and standard deviation 

u(area) = n1/2uAu (9) 

in which n is the number of absorption-mode data points in 
the integration domain (24). Next, since NO and absorp- 
tion-mode peak area differ by a constant (see eq 4 ff) 

No absorption area 
u(No) u(absorption area) 

P(N0) = - - - (10) 

Then, since the absorption-mode peak area is No/4 ,  we can 
use eq 9 to obtain 

(11) 

Next, solve eq 6 for NO and substitute for NO in eq 11; then 
substitute for 7 = l / ( ~ A u ~ , ~ )  to obtain the following expression 
for the precision in determination of No from a measurement 
of absorption-mode Lorentzian peak area 

absorption area - NO - 
= dabsorption area) 4n1/2g Av 

in which 
h = n / K  

is the domain of integration (in multiples of AulIz) and we have 
used the identity 

Au, J H z  /line width) 
A,&% I 

K(points/line width) = (12c) Av(Hz/point) 

For eq 12a to be valid, the domain of numerical integration 
should be chosen so as to include, say, >95% of the true 
absorption-mode peak area. 

3. “Complex Area”. The “complex” area method consists 
of adding the areas (each treated as mathematically real 
quantities) of the real, R(ui), and imaginary, I ( u i ) ,  spectra 
obtained by discrete FT of a time-domain discrete signal (12). 
In this case, the deviation in the resultant area is given by 

n n 

i=l i = l  
6 = Au(([CR(vi)  + NR(u~)]’ + [ C I ( V ~ )  + N I ( u ~ ) ] ~ ) ” ~  - 

([ 5R(vi)  I 2 + [ 2 ~ ( u i )  12)1/2) 
i = l  i=l  
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n 

i = l  

represent randomly distributed Gaussian noise (with standard 
deviation in the real and imaginary spectral components 
of the complex FFT of f(t) (24) ,  and we have used the ap- 
proximation 

n n 

i = l  i= l  
2Nk(vi)xR(Vi) + 2N’1(vi)xR(vi) >> N’R(vi)’  + N’I(Vi)’ 

(15) 
If equation 13 is next expanded in a Taylor series and only 

the first two terms are kept-neglect of the remaining terms 
produces negligible error in practical circumstances-then eq 
13 may be simplified to give 

N R ( v i )  ?R(ui) + N I ( v i )  ? l ( v i )  

(16) 
i = l  i = l  b =  

( [ ? ~ ( v i ) 1 2  + [$ l (v i )12 ) ’ /2  i = l  
i= l  

In other words, 6 may be described by a normal distribution 
with zero mean and standard deviation, un1/2, which is the 
same as for direct numerical integration of a perfectly phased 
absorption-mode spectrum (19). Thus, for numerical inte- 
gration of either phased absorption-mode or “complex area”, 
the precision in determination of absorption-mode peak are 
is given by 

EXPERIMENTAL SECTION 
Simulated Data. Data simulation was conducted with a 20 

bit/word Nicolet 1280 computer. Gaussian noise was created by 
converting uniform random numbers into a Gaussian distributed 
random number file (25). The histogram of the Gaussian random 
numbers closely resembled that for experimentally acquired 
Gaussian noise, and the FFT spectrum of the random number 
sequence showed no peaks [demonstrating that the noise was 
“white” (Le., independent of frequency)]. Random noise was added 
to each time-domain simulated signal, and least-squares fit to a 
magnitude-mode Lorentzian line shape was performed on the FFT 
spectrum of the time-domain simulated signal-plus-noise. 

Experimental Data. FT/ICR experimental time-domain 
signals of Iz+ were acquired with a Nicolet FTMS-2000 mass 
spectrometer operating in heterodyne mode at 3 T. Iodine crystals 
were introduced with a solid probe which had been cooled to - 10 
OC, and 12+ ions were formed by electron ionization (70 eV). The 
number of points per line width in the FFT spectrum was adjusted 
by varying the sampling frequency (32 kHz < Nyquist bandwidth 
< 100 kHz) while keeping the number of time-domain data points 
constant (4K or 8K). Alternatively, the time-domain damping 
constant was varied [by addition of argon gas to a neutral pressure 
between lo4 Torr (7 = 20 ms) and lo-’ Torr (7 = 200 ms)] at fixed 
sampling rate and number of time-domain data points, to cover 
the same abscissa range in Figures 3 and 4 (see Results and 
Discussion). Signal-to-noise ratio was additionally varied by 
varying the electron emission current. The number of points per 
line width in the FFT spectrum was adjusted by varying the 
sampling frequency at constant time-domain acquisition period. 
The standard deviation for ion relative abundance (determined 
from FT/ICR mass spectral peak area) was computed from 15 
spectra acquired independently under identical conditions. The 
(single-peak) spectra were phase corrected before performing 
absorption-mode least-squares fit or numerical integration. 

Least-squares fits to both magnitude-mode and absorption- 
mode spectra were performed with a grid search algorithm (25). 
An initial estimate for the fit parameters (peak area, peak center 
frequency, and peak width) was obtained by visual approximation 
from the magnitude-mode spectrum. A representative experi- 
mental FT/ICR magnitude-mode discrete spectrum and best-fit 
Lorentzian are shown in Figure 5 (see Results and Discussion). 

3001 Magnilude-mode (Iheoretlcdl) 

, ,/ Absorption-mode (theoretical) 

SNR K”? 
Figure 1. Precision in determination of number of oscillators, No, as 
a function of the ratio, SNR, of frequencydomain peak height to root 
mean square spectral base-line noise, and number of data points, K ,  
per full peak width at half-maximum absorption-mode peak height: 0, 
direct least-squares f i i  to absorption-mode spectrum; W, direct least- 
squares f i  to magnitudemode spectrum. Straight lines are theoretical 
predictions based on a single (simulated) data set. Plotted data rep- 
resent averages over 30 trials of the same simulated spectrum with 
different random noise of the same root mean square deviation. 

Numerical integration of the phase-corrected absorption-mode 
spectrum was performed by use of Simpson’s rule (25). Complex 
area was obtained as described by Gross (12). 

RESULTS AND DISCUSSION 
Computer-Simulated Spectra. The predicted precision 

in determination of number of oscillators was computed from 
eq 1 and 7 (based on fits to absorption-mode or magnitude- 
mode Lorentzian peak shape) or eq 12a (for direct integration 
of phased absorption-mode or “complex area”) for simulated 
spectra with various frequency-domain signal-to-noise ratios 
(SNR) and K values. Those predictions were tested by de- 
termining the standard deviation for various spectral param- 
eters (absorption-mode peak area, uo, and 7) from 30 simulated 
spectra of the same spectral peak height, uo, and 7, with 
different added random noise of the same root-mean-square 
deviation. 

Figure 1 compares the precision, P(No), in determination 
of the number of oscillators predicted from a single spectrum 
to that actually computed from the standard deviation of 30 
such measurements of the FFT spectra of simulated time- 
domain damped exponential sinusoidal signals to which ran- 
dom time-domain noise has been added. In the figure, P(No) 
based on three-parameter (peak area, yo, and T )  fits to Lor- 
entzian absorption-mode and magnitude-mode spectra is 
plotted as a function of the product of frequency-domain peak 
height-to-noise ratio (SNR) and K1/2. For absorption mode, 
K is the number of points per full absorption-mode peak width 
at  half-maximum peak height. For magnitude mode, K is 
redefined as 3ll4 times the number of points per absorption- 
mode peak width, in order that the absorption-mode and 
magnitude-mode plots may be compared on the basis of points 
per hertz rather than points per line width. Figure 2 shows 
the corresponding plots of precision vs (SNR)(K/h)1/2 for 
numerical integration of a correctly phased Lorentzian ab- 
sorption-mode spectrum or a “complex area” integration; in 
each case, the domain of integration is extended to include 
95% of the peak area. 

According to the theory, No determined from least-squares 
fit to a magnitude mode spectrum is -15% more precise than 
No determined from least-squares fit to the corresponding 
absorption-mode spectrum, because (a) the number of points 
per peak width increases by 31/2 in proceeding from absorp- 
tion-mode to magnitude-mode Lorentzian line shape (so that 
K increases by 31/2 and the precision increases by K1I2, for 
a net increase in precision of -30%) and (b) the magni- 
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0 100 200 

SNR * (Wh)’ ’ 
Flgure 2. As in Figure 1, except that the number of data points per 
line width has been divided by the number of line widths, h ,  over which 
peak area is measured: D, No determined from the sum of the areas 
of the real and imaginary components of the complex FFT spectrum 
( 72): ., No determined from (phased) absorption-mode spectral peak 
area by direct numerical integration. Note: the open and solid squares 
overlap so closely that they cannot be resolved in this display. 

5 100 .- 
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0 50 100 150 200 
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Flgure 3. Same as Figure 1, but for experimental FT/ICR mass 
spectral data: D, direct least-squares fit to absorptbn-mode spectrum; 
a, direct least-squares fit to magnitude-mode spectrum; 0, No de- 
termined from peak height of least-squares fit to magnitude-mode 
spectrum; -, theoretically predicted behavior for the stated ex- 
perimental SNR and K values; - - -, straight line passing through the 
origin which best fits the plotted points. 

tude-mode peak shape is different from absorption mode, 
leading to a different value of c(a) .  (The magnitude-mode 
fit extends to frequencies a t  which the spectral signal has 
dropped to twice the root-mean-square base-line noise.) 

To compare the precision of the least-squares fits to the 
direct numerical integration methods, we must fix the domain 
of integration, h. For example, if the direct integration is to 
include 95% or more of the absorption-mode peak area, h 
must be greater than 12.7 absorption-mode Lorentzian line 
widths. Under those conditions, the  magnitude-mode 
least-squares fit is 60% more precise than  numerical inte- 
gration of  either the phase corrected spectrum or the 
“complex area” method. The simulated spectral data analyzed 
in Figures 1 and 2 thus confirm the theoretical predictions 
of eq 1 and 7 (for least-squares fits) and eq 12a (for direct 
integration). 

One might argue that when only relative abundances are 
required, the integration width need not extend to include 
95% of the absorption-mode peak area, thereby increasing 
the precision of the direct integratioin method. However, 
partial integration presents two practical problems. First, 
unless the peak widths (i.e., 7 values) of all of the peaks are 
identical, systematic errors in relative abundances will be 
introduced. Second, the increase in precision, area/ cr(area), 
by reduction in integration domain, h, will be small, because 
a decrease in h reduces the computed area as well as the 

SNR * (Wh)”’ 

Figure 4. Same as Figure 2, but for experimental FT/ICR data. Again, 
the open and solid squares overlap in this display: -, theoretically 
predicted behavior for the stated experimental SNR and K values; - - -, 
straight line passing through the origin which best fits the plotted points. 

kAVle 
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Figure 5. Representative discrete magnitude-mode FT/ICR mass 
spectrum, with best-fit magnitude-mode Lorentzian smooth curve drawn 
through the points. 

imprecision in area measurement: cr(area) a h1l2. 
Experimental FT-ICR Spectra Figures 3 and 4 present 

experimental FT/ICR mass spectral data for 12+ ions, plotted 
as for the simulated data of Figures 1 and 2. Figure 5 shows 
a typical experimental magnitude-mode FT/ICR discrete mass 
spectrum along with a best-fit to magnitude-mode Lorentz 
line shape. The theoretical lines in Figures 3 and 4 represent 
predicted precision based on SNFt and K for a single spectrum, 
and the data points represent the actual precision in No de- 
termined from a series of 15 independent measurements. 
Although the slopes of plots of peak area precision vs S N R W 2  
from ex2erimental data are 20-30% lower than those pre- 
dicted for the theoretical ones, the data still give straight-line 
plots with correlation coefficients of 20.9. The differences 
between experiment and theory are probably due mainly to 
variation in number of ions from one experiment to the next, 
due to variation in electron beam current. Nevertheless, 
Figures 3 and 4 show that the precision in No determined from 
least-squares fit to a magnitude spectrum is slightly better 
than that for NO determined from a least-squares fit to the 
corresponding absorption-mode spectrum and is -60% better 
than that for No determined by “complex area” or direct 
numerical integration of a phased absorption-mode spectrum 
(for integration domain extended to include 95% of the peak 
area). 

Finally, Figure 3 (open circles) illustrates the disadvantage 
of the use of peak height as a measure of relative abundances. 
Although theory predicts (compare the present results with 
those in ref 23) that the precision in peak height should be 
as good as that for peak area (provided that all spectral peak 
widths are equal), Figure 3 shows that for experimental 
FT/ICR data, relative abundance computed from least- 
squares fit to spectral data points whose magnitude exceeded 
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-2a is twice as precise as relative abundance obtained simply 
from peak height of the same least-squares-fitted magni- 
tude-mode spectrum. 

Althought the present computations are restricted to 
umpodized magnitude-mode Lorentzian line shapes, the same 
qualitative conclusions should apply to other line shapes, with 
revised values of c(ai) in eq 1 (see ref 23 for examples). 

C 0 NCLU S IO N 
In this paper, we have developed expressions for the pre- 

cision of number of oscillators, NO, obtained by various 
treatments of FFT absorption-mode and magnitude-mode 
Lorentzian spectra. We find that both theoretical and ex- 
perimental FT/ICR relative abundance precision based on 
least-squares fit to the magnitude-mode spectrum is slightly 
more precise than that obtained from least-squares fit to the 
corresponding (if available) phased absorption-mode spectrum. 
Although both of the above methods are distinctly superior 
in precision to determination of No by direct numerical in- 
tegration of the complex or phased imaginary (i.e., pure ab- 
sorption-mode) FFT spectrum, the magnitude-mode approach 
has the (major) advantage that it is not necessary to phase- 
correct the spectrum in order to determine relative abun- 
dances. (It is worth noting that the "complex area" compu- 
tation requires twice as much memory as a magnitude-mode 
least-squares fit.) Experimental FT/ICR precision in No is 
somewhat (-20%) lower, for all algorithms, than that pre- 
dicted theoretically. Finally, peak area is in general superior 
to peak height as a measure of relative abundances. 
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