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A new family of highly efficient interpolating functions, the KCe func- 
tions, KCe(oo) = (aoo 2 + b~o + c) e, where e is the exponent, is developed 
for three-point frequency interpolation of discrete, magnitude-mode, 
apodized Fourier transform spectra. The family is characterized by high 
interpolation accuracy and ease of implementation. Various members of 
the family can be generated by varying the exponent. Prior work from 
this laboratory indicated that the parabola is the interpolating function 
of choice for interpolation of discrete, apodized magnitude spectra. We 
show here that, compared to parabolic interpolation, KCe interpolation 
typically gives residual systematic errors which are lower by between 
one and two orders of magnitude. These systematic errors are analytically 
derived and the efficacy of interpolation is rigorously examined as a 
function of the KCe exponent, the number of zero-fillings, the amount 
of damping in the transient, and the window function used to apodize 
the spectrum. For Hanning-apodized spectra, the KC5.5 function gives 
the lowest residual systematic errors, which are typically 15 times less 
than those remaining after parabolic interpolation. Similarly, the KC6.6 
function is optimal for Hamming-apodized spectra (22 times better than 
parabolic interpolation) and the KC9.5 function is optimal for Blackman- 
Harris-apodized spectra (80 times better than parabolic interpolation). 
By extrapolation from other optimal KCe functions, we estimate that 
the optimal KCe function for interpolation of Kaiser-Bessel-apodized 
spectra is KC12.5. Analytical formulae for propagation of random errors 
in spectral intensity into random errors in interpolated frequency are 
derived for parabolic interpolation and for KCe interpolation. These 
error propagation formulae give random errors which are inversely pro- 
portional to the SNR of the spectrum. These formulae are evaluated 
with the appropriate KCe exponent for each of the Hanning, the Ham- 
ming, and the Blackman-Harris windows. In all cases we find that the 
random error is essentially independent of both window type and inter- 
polation scheme. While zero-filling prior to interpolation reduces the 
residual systematic frequency interpolation error, it increases the random 
frequency error. The increase in random error with higher levels of zero- 
filling is explained. Because the random errors are proportional to noise 
level, the optimal number of zero-fillings varies with SNR. If the apodiz- 
ing window is chosen to match the dynamic range of the spectrum, as 
we have previously recommended, then the systematic error for KCe 
interpolation of non-zero-filled spectra is so low that the overall error is 
dominated by the random error. In this case, KCe interpolation is, for 
all intents and purposes, exact. Since the random error is minimized by 
no zero-filling, the lowest overall error will be achieved by a combination 
of no zero-filling and KCe interpolation. In constrast, the minimum total 
error for parabolic interpolation is achieved by interpolation of the once- 
ze~'o-fiiled spectrum. A further advantage of KCe interpolation, over and 
above its lower total error, is that KCe interpolation obviates the need 
for zero-filling. 
Index Headings: Computer applications; Instrumentation, Fourier trans- 
form; Mass spectroscopy; Microwave spectroscopy; FT-IR; Spectro- 
scopic techniques. 

I N T R O D U C T I O N  

Unl ike  the i r  s cann ing  coun te rpa r t s ,  Four i e r  t r a n s f o r m  
(FT)  s p e c t r o m e t e r s  such  as F T - n u c l e a r  m a g n e t i c  reso- 
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nance  ( F T - N M R ) ,  F T - i o n  cyc lo t ron  resonance  (FT- ICR) ,  
a nd  F T - m i c r o w a v e  s p e c t r o m e t e r s  do no t  give a s p e c t r u m  
direct ly ,  b u t  r a t h e r  genera te  a t r a n s i e n t  signal,  charac -  
ter is t ic  of  the  ent i re  sample .  Th i s  signal  consis ts  of  a s u m  
of  t i m e - d o m a i n  signals,  each  of  the  f o r m  given b y  Eq.  1, 

F(t )  = 2~rK cos(coot )exp( - t / r )  0 < t < T (1) 

where  w0 is the  r e s o n a n t  f r equency ,  K is a c o n s t a n t  p ro-  
po r t iona l  to  the  n u m b e r  of  oscil lators,  r is t he  re laxa t ion  
t ime  of  the  t i m e - d o m a i n  signal,  and  T is the  acquis i t ion  
t ime  of  the  signal. T h e  a m o u n t  of  d a m p i n g  in the  signal  
is desc r ibed  by  the  d a m p i n g  ra t io  T/~. TIT = 0 corre-  
sponds  to  an  u n d a m p e d  t r ans ien t ;  T / v  = 3 charac te r izes  
a t r a n s i e n t  which  decays  to  5 % of  its ini t ial  value an d  
is essent ia l ly  comple t e ly  d a m p e d .  

T h e  c o n t i n u o u s  t ime  signal  is s amp le d  N t imes  a t  a 
s ampl ing  ra te  S 

T = N / S  (2) 

to  give a discre te  t ime  signal,  wh ich  is s tored.  T h e  dis- 
cre te  t ime  signal  m a y  be a u g m e n t e d  by  a d d i n g  n sets  of  
zeros, wi th  each  zero-fi l l ing doub l ing  the  l eng th  of  the  
s to red  t ime  signal. 1,2 N u m e r i c a l  Four i e r  t r a n s f o r m a t i o n  
of  th is  d iscre te  t ime  signal  gives a discre te  s p e c t r u m  
def ined  on ly  at  the  d iscre te  f requenc ies  fro, 

m 
f "  = 2--~ n =  0 , 1 ,  2, . . . 

m = 0 , 1 , 2 , . . . , 2 " N -  1 (3) 

where  n is n u m b e r  of  zero-fil l ings a nd  m is the  index  of  
the  d iscre te  spec t rum.  T h e  c hanne l  spacing,  Af, t he  fre- 
q u e n c y  d i s tance  be tween  two ad j acen t  d iscre te  f r equen-  
cies, is given by  2 

1 
Af  = 2n-- ~ n = 0, 1, 2 , . . . .  (4) 

Now,  the  t rue  f r equency ,  ~00/27r (Eq. 1), will a lways  lie 
b e t w e e n  two a d j a c e n t  f requenc ies  o f  the  d iscre te  spec-  
t r u m  (Eq. 3), and  t ak ing  t he  h ighes t  local  m a x i m u m  in 
the  d iscre te  s p e c t r u m  as an  e xpe r imen t a l  m e a s u r e m e n t  
o f  ~0 o will give rise to  a sy s t ema t i c  e r ror  wh ich  is i n h e r e n t  
in the  m e t h o d  (see Fig. 1). Th i s  sys t ema t i c  er ror  can  be 
r e d u c e d  by  e x t e n d e d  zero-filling, wh ich  can  r educe  the  
e r ror  to  less t h a n  a n y  des i red  a m o u n t .  2 Zero-fil l ing, 
t hough ,  has  the  ma jo r  d i s a dva n t age  of  requ i r ing  ve ry  
large c o m p u t e r  m e m o r i e s  to  s tore  t he  zero-fi l led t r an -  
s ien t  and  the  zero-fi l led spec t rum.  

An  a l t e rna t ive  p r o c e d u r e  to  min imize  t he  d iscre te  er ror  
o f  e xpe r imen t a l  Four i e r  spec t ra  is i n t e r p o l a t i o n )  ,4 In  this  
p rocedure ,  a few discre te  in tensi t ies  are  used  to  fit a 
f unc t ion  f r o m  which  an  i n t e rpo l a t ed  p e a k  loca t ion  can  
be  ca lcula ted .  F igure  1 i l lus t ra tes  this  app roach .  Curve  
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C is the continuous magnitude line shape given by Eq. 
5. 3,6 Equation 5 gives 

CR(0;) = Kr[1 - 2 exp(-T/r)cos[(0; - Coo)T)] 

+ e x p ( - 2 T / r ) ]  '/2 

1 
" 1 + ( 0 ; - ~ o ) 2 r  ~ ' (5) 

the continuous rectangle-apodized magnitude line shape 
as function of the frequency, 0;; the resonant frequency, 
coo; the acquisition time, T; the relaxation time, r; and 
the scaling factor, K. Equation 5 is the magnitude Fourier 
transform, i.e., the modulus of the complex Fourier trans- 
form, of Eq. 1. The crosses in Fig. 1 are discrete spectral 
intensities and are the only points from which to deter- 
mine the frequency w o. Curve K C  is an interpolating 
function derived below. Note that the center frequency, 
cointer,, of curve K C  lies closer to coo than does either of 
the adjacent frequencies in the discrete spectrum. The 
residual systematic error of the interpolation method 
illustrated by Fig. 1 is the difference between coi.~rp and 
('00" 

Two different approaches to interpolation have ap- 
peared in the literature. Simple functions, such as the 
parabola P(co), given by Eq. 6, 

P(~0) = a¢02 + bco + c, (6) 

the Lorentzian function, L(w), given by Eq. 7, 

I t '  
L(0;) = (7) 

1 + (0o - 0 ; i n t e r p ) 2 T  2 '  

and the magnitude-Lorentzian function, ML(co), given 
by Eq. 8, 

[ r '  ]'/~ 
ML(co) = K '  1 + (co 2 2 2 ' 

can be used 4,6 to calculate an interpolated frequency, 
coi,~r,, which is closer to the true frequency, 0;o, than any 
of the discrete frequencies, 27rfm. For interpolating the 
natural magnitude line shape, Eq. 5, magnitude-Lorentz- 
ian interpolation is analytically exact; 3 cointerp : 600" That  
is, regardless of the value of the damping constant, r, 
and regardless of the location of true frequency, O~o, mag- 
nitude-Lorentzian interpolation of the natural magni- 
tude line shape always gives the true frequency coo) 

The second approach to interpolation involves the der- 
ivation and manipulation of the equations needed to 
exact ly  solve for ~0o. For the non-zero-filled, unapodized, 
magnitude line shape, this requires interpolation with 
ML(0;). 4 ML(0;) will also exactly interpolate from the 
non-zero-filled, or once-zero-filled, unapodized, absorp- 
tion line shape of an undamped transient2 In the case 
of apodized magnitude line shapes, a complicated func- 
tion can be derived, which, with iterative techniques, will 
exact ly  solve for the true continuous frequency, 0;0. TM 

In the present work, we develop a family of functions, 
the K C e  functions, which provide nearly exact interpo- 
lation. We examine the residual maximum systematic 
frequency error remaining after K C e  interpolation of a 
discrete, apodized magnitude line shape. The residual 

KC6.6 INTERPOLATION OF A 
RECTANGLE-APODIZED 
MAGNITUDE LINESHAPE 

"/7'¢. I, *~/2, n-O 

SeC 

f m ,  , HZ 
m - 4  m + 4  

corn-", ' 
wm cointerp, rn+l  
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FIG. 1. Rectangle-apodized magnitude line shape and interpolating 
KC6.6 function. Curve C is the continuous magnitude line shape given 
by Eq. 5, with T/r  = 1.0, which was unapodized before Fourier trans- 
formation. The crosses are the values in the non-zero-filled discrete 
magnitude spectrum for a value of the frequency shift factor dp/T = 
~/2. This value of ¢ / T  gives the largest systematic error. The discrete 
spectrum is defined only at  the discrete frequencies given by Eq. 3. m 
is the index of the discrete spectrum (Eq. 3). Curve KC is the continuous 
KC6.6 function calculated from Eq. 9. The three boldface crosses are 
the values in the discrete spectrum which were used with Eqs. A1-A3 
of the appendix to determine the parameters of curve KC. Note tha t  
the frequency of curve KC does not equal tha t  of curve C. 

error is examined as a function of the apodizing window, 
the K C e  exponent, e (Eq. 9), the damping ratio, T/r,  and 
the number of zero fillings, n. We find that the optimal 
K C e  exponent varies with the window, but that proper 
selection of the exponent always gives substantial re- 
ductions in the residual systematic error. The residual 
systematic errors can be as much as a factor of 80 lower 
than the best previously used interpolating functions. 

In addition, the simple analytical form of the K C e  
functions allows derivation of formulae for the propa- 
gation of random errors in spectral amplitude into ran- 
dom errors in the interpolated frequency. These random 
errors increase with higher levels of zero-filling. For many 
cases the random error in K C e  interpolation exceeds the 
sys t emat i c  error. For these cases, the K C  interpolation 
method is, for all intents and purposes, exact. After ex- 
amining the total interpolation error, the sum of the 
systematic, and random errors, we conclude that the op- 
timal data treatment procedure is to interpolate the non- 
zero-filled magnitude spectrum with the appropriate KCe  
function. 

RATIONALE FOR THE K C e  FUNCTIONS 

Our prior work 4 on the interpolation of apodized line 
shapes examined the efficacy with which the parabola, 
P(0;), Eq. 6, the Lorentzian function, L(0;), Eq. 7, and 
the magnitude-Lorentzian function, ML(0;), Eq. 8, could 
interpolate, from the three largest peaks in the discrete 
spectrum, to an estimation of true frequency, 0;o. Each 
of these functions can be expressed by the generic for- 
mula 

KCe(¢o) = (aco 2 + b0; + c) e (9) 

where a, b, and c are constants chosen to fit the function 
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to the three discrete intensities and where the exponent 
e has the value 1 for the parabola, - 1  for the Lorentz- 
Jan, and - IA for the magnitude-Lorentzian. All three of 
these values for the exponent, e, gave interpolations which 
were superior to no interpolation, but  with varying ef- 
ficacies. When examined from this viewpoint, the ex- 
ponent e in Eq. 9 is a variable which generates a family 
of interpolating functions of which P(w), L(w), and ML(w) 
are specific members. It seems reasonable then, that  oth- 
er members of this family could be superior to any of 
P(w), L(w), and ML(o~). It is shown in this work that this 
is so. 

T H E O R Y  

Interpolation of Discrete Fourier Spectra. The theo- 
retical framework for the interpolation algorithms fol- 
lows in part that of our prior work, ~,4 and is repeated 
here as necessary for completeness. Curve C in Fig. 1 is 
a cont inuous magnitude line shape and the crosses in 
Fig. 1 are the values in the discrete magnitude spectrum 
at the discrete frequencies fro. m is the index of the dis- 
crete spectrum. The location, %, of a continuous spectral 
peak which lies within _+ 1/2 Af of the mth point of the 
discrete spectrum can be specified in terms of parameters 
of the discrete spectrum by 

2~rm + q~ 
(10) Wo = 2n T 

where the frequency shift angle, ¢, varies from - r  (when 
wo lies halfway between m - 1 and m) to ~r (when Wo lies 
halfway between m and m + 1). The three specific fre- 
quencies, w~_i, Wm, and W~+a, in the cont inuous spectrum, 
which correspond to the three largest values on the spec- 
tral peak in the discrete spectrum, are defined in terms 
of the parameters of the discrete spectrum by 

21r(m - 1) 
(11) Wm--1 = 2"T 

2~rm 
(12) Wm = 2, T 

2~r(m + 1) 
(13) w,.+~ = 2n T 

The three values in the discrete spectrum which will be 
used for interpolation are indicated by boldface crosses 
in Fig. 1. 

Quadratic Interpolation. For any second-order poly- 
nomial of the form 

y = a x  2 + bx + c (14) 

the value Xo where y is an extremum can be determined 9 
from the three pairs of values 

xl, Y5 x2, Y2; x~, Y3 (15) 

and the equation 

AX [y Ya - Yi ~] (16) 
y 

where Ax is the spacing between equally spaced abscissas, 
i.e., 

Ax = x2 - xl = x3 - x2. (17) 

Use of Eq. 16 does not require that  the quadratic coef- 
ficients a, b, and c be known explicitly. In the following 
sections various KCe functions will be manipulated so 
that  they assume the form of Eq. 14, and Eq. 16 will then 
be used to calculate an "interpolated peak frequency." 

KCe Interpolation. As argued above, a function which 
could be used for spectral interpolation is the KCe func- 
tion, Eq. 9. KCe interpolation is defined by the assign- 
ment 

KCe(wm) = C(wm), m = m - 1, m, m + 1 (18) 

where C(w) is any  magnitude line shape. This interpo- 
lation is facilitated by taking the eth root of Eq. 18, which 
converts the KCe function to a quadratic and thus allows 
use of Eq. 16 for calculating the interpolated frequency, 
Winterp" Thus, rather than at tempt to fit the KCe function 
to the discrete intensities C(m - 1), C(m), and C(m + 
1), we will fit the eth root of the KCe function to the eth 
root of the discrete intensities. Taking these eth roots, 
making the assignment 

X 0 ~--- OOinterp (19) 

and substituting Eqs. 12, 4, and 18 into Eq. 16 gives Eq. 
20: 

2~rm 7r 
O)interp = 2"T 2nT 

r (C(6Om+l)) l / e -  (C(.m_,)) 1" 1 
X['(C((~Qrn_l))l/-'---~: 2(--C(,.,o-~))'"~;~ (C(------~m+O)'/;J" 

(20) 

Equation 20 gives w~,~rp, the interpolated frequency re- 
sulting from KCe interpolation of the magnitude line 
shape, as a function of T (Eq. 2), the non-zero-filled 
acquisition time; n, the number of zero-fillings; e, the 
KCe exponent (Eq. 9); m, the index value of the point 
in the discrete frequency spectrum which is the discrete 
local maximum; C(wm), the local maximum; and C(wm_l) 
and C(wm+,), the discrete intensity values on either side 
of C(~m). 

Sys temat ic  Errors for KCe Interpolat ion.  Equation 20 
gives the interpolated frequency resulting from KCe in- 
terpolation. The true frequency, i.e., the location of the 
peak maximum in the continuous spectrum, is ¢0o, and 
thus the systematic error in frequency determination is 
given by 

% Error (systematic) 

= Wo (Eq. 10) - Win~,p (Eq. 20) 
x 100%. (21) 

Equation 21 gives the residual systematic error for three- 
point KCe interpolation of the discrete magnitude line 
shape as a function of the acquisition time T (Eq. 2). 
The error is expressed as a percentage of the channel 
spacing (Eq. 4) in the non-zero-filled discrete spectrum. 

Since Eq. 21 depends on Eqs. 10 and 20, which in turn 
depend upon Eq. 1, Eq. 21 is implicitly a function of K, 
r, and Wo, the parameters of the time-domain signal (Eq. 
1), as well as the frequency shift angle, 4~ (Eq. 10), the 
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number of zero-fillings, n, and the type of apodizing win- 
dow. Variation of these parameters allows calculation of 
the systematic interpolation error as a function of all of 
these variables. 

The dependence of the systematic frequency error upon 
the frequency shift angle, ¢, merits some discussion. Be- 
cause the error discussed in this section is systematic and 
varies from zero when ¢ / T =  0 to some bounded upper 
value, we have carried out a methodical search for this 
upper bound by letting ¢ / T  vary over the range 0 < ¢ /T  
< ~. Since the line shape is symmetrical, it is unnecessary 
to search over the range -~r < ¢ / T <  0. An increment 
of ~r/100 was used in this search. The error thus found 
is the worst-case error for the particular values of damp- 
ing ratio, T/r, and apodizing window used in the search. 
The calculation was then repeated for different values 
of the damping ratio T/r. The maximum residual error, 
for whatever value of ¢ /T  and whatever value of T/r  gave 
that  error, was recorded. The value for the KCe exponent 
e was then incremented by 0.5, and the entire calculation 
was then repeated for the new value of e. The dependence 
of the error upon the KCe exponent e was noted and, 
once an error minimum was found, a fine search in in- 
crements of Ae = 0.1 was conducted to find a superior 
value of e. The second through fourth columns of Table 
I give the absolute value of maximum interpolation error, 
for whatever value of T/r and whatever value of ¢ gave 
that  error, as a function of the KCe exponent. The bold- 
face numbers in the first column of Table I give the value 
of e which gave the lowest error. The boldface numbers 
in each of the other columns give the corresponding low- 
est error for the indicated window. 

All of the above calculations were then repeated for 
zero-filled spectra. However, the optimal value of the 
KCe exponent e was virtually the same as the optimal 
value for no zero-filling (n = 0) given in Table I. 

Random Errors for KCe Interpolation. Equations 20 
and 21 give the systematic error in frequency determi- 
nation which remains after three-point KCe interpola- 
tion of a magnitude line shape. This systematic error 
derives from a limitation of the experimental method, 
namely the discrete nature of the experimental Fourier 
spectrum. In addition to this systematic error there is 
also a random error in the interpolated frequency. These 
random frequency errors derive from random amplitude 
errors in the discrete magnitude intensities, C(wm), m = 
m - 1, m, m + 1. By use of standard error propagation 
formulae, m analytical formulae for the random frequency 
error, Ao~, can be derived as functions of the random 
amplitude error. This random frequency error is given 
by Eq. 22 (see below), where 

X,  = [C(~,)]  lie 

and 

AXi = _1 [C(o~i)],/~_lA C 
e 

i = m -  1, m , m  + 1 (23) 

i = m - 1, re, m +  1 (24) 

TABLE I. Maximum residual systematic frequency error (T/r = (0- 
3.0) ° for interpolation of non-zero-filled, apodized, magnitude line shapes 
as function of KCe exponent, e. 

Hanning  Hamming  Blackman- 
interpolation interpolation Harris  inter- 

KCe error error polation error 
exponent,  e b (%) (%) (%) 

2.5 1.660 2.149 2.005 
3.0 1.259 1.654 1.170 
3.5 0.970 1.299 0.934 
4.0 0.754 1.033 0.757 
4.5 0.586 0.826 0.620 
5.0 0.452 0.661 0.509 
5.3 0.383 - -  - -  
5.4 0.362 - -  - -  
5.5 0.342 0.525 0.419 
5.6 0.360 - -  - -  
5.7 0.382 - -  
6.0 0.443 0.412 0.344 
6.4 - -  0.334 - -  
6.5 0.532 0.317 0.280 
6.6 - -  0.306 - -  
6.7 - -  0.325 - -  
6.8 - -  0.344 - -  
7.0 0.608 0.380 0.226 
7.5 0.674 0.461 0.179 
8.0 0.732 0.532 0.137 
8.5 0.783 0.595 0.101 
9.0 0.828 0.651 0.068 
9.3 - -  - -  0.051 
9.4 - -  - -  0.045 
9.5 0.869 0.701 0.041 
9.6 - -  - -  0.046 
9.7 - -  - -  0.052 

10.0 0.906 0.746 0.068 

Maximum systematic frequency error, calculated from Eq. 21, for 
whatever value of T/r and whatever value of ¢ tha t  gave the largest 
error, expressed as a percentage of the channel spacing (Eq. 4) in the 
non-zero-filled discrete spectrum. The optimal value of e for each 
window and the corresponding error are in boldface. The optimal 
values for zero-filled spectra (n = 1-3) were also calculated. In all 
cases, the optimal values of e increased very slightly, but  agreed with 
those given above within _+0.4. 

b Equat ion 9. 

and AC is the amplitude noise at each point in the dis- 
crete spectrum. For use in Eq. 22, we have set AC to be 
a given fraction of the continuous peak height, C(%). 

Equations 22-24 give A¢0, the random error in the KCe 
in terpola ted frequency result ing from propagation 
through Eq. 20 of AC, the random error in intensity, as 
a function of the acquisition time, T (Eq. 2), the discrete 
magnitude intensities, C(w~), m = m - 1, m, m + 1, and 
the random error in amplitude, AC. The error is ex- 
pressed as a fraction of the channel spacing in the non- 
zero-filled discrete spectrum. Equation 22 is valid for 
any KCe function, for any magnitude line shape, for any 
value of the frequency shift angle ¢, for any number of 
zero-fillings, n, and for any value of any of the parameters 
of Eq. 1. 

Because the random error in frequency is a function 
of ¢ (Eq. 10) and since all values of ¢ are equally probable, 
we have calculated the average value of the random error 

i(.o ---~ 

71"(Xm+ 1 - -  Xrn_l  ) ( ~ X m + l  2 -~ A X m _ l  2 A X m _ l  2 -4- 4AX. ,  ~ + AXm+12y a 
2nT(~m_l --- 2X~  -~-Xm+,) \ (Xm+l - X , n - , )  2 + ( - ~ m - 1 -  ~ • ~3~--~1)2 ] 

2~r/T 
(22) 
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RANDOM FREQUENCY ERRORS FOR PARABOLIC 
AND KC5.5 INTERPOLATED HANNING-APODIZED 

MAGNITUDE MODE 
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z 

1 i i I I I I I I I 
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FIG. 2. Random frequency errors for parabolic (P curves) and KC5.5 
(KC curves) interpolation of the zero-filled, Hanning-apodized, mag- 
nitude line shape as a function of T/~.The errors are expressed as a 
percentage of the channel spacing in the non-zero-filled discrete spec- 
trum (Eq. 3). The curves give the average random frequency error 
remaining after interpolation of the Hanning-apodized, zero-filled, dis- 
crete line shape for which the noise level is 1% of the peak maximum 
(SNR = 100). For example, curve 2KC gives the average frequency 
error remaining after KC5.5 interpolation of the Hanning-apodized, 
twice-zero-filled, discrete magnitude spectrum. Curve 0P gives the av- 
erage frequency error remaining after parabolic interpolation of the 
Hanning-apodized, non-zero-filled, discrete magnitude spectrum. These 
error curves were calculated from Eqs. 22 and 36, with e = 1 for the P 
curves and e = 5.5 for the KC curves and then averaged according to 
Eqs. 25 and 26, as described in the text. The errors in this figure arise 
from the finite signal-to-noise ratio of the experimental data and should 
be added to the systematic errors given in Fig. 3 to predict the total 
error for a given experimental situation. The errors in this figure are 
proportional to the noise level (Eq. 24) and would be 10 times less for 
an SNR of 1000, 10 times greater for an SNR of 10, etc. 

by averaging the random error over the range 0 < ~b 
7r. 

A~o,~ = - A~o (Eq. 22) d4~ (25) 

% Error  (random) = Aco.~, (Eq. 25) x 100%. (26) 

Because the line shape is symmetrical,  it is unnecessary 
to average over the range -~r < q~ < ~r. Equat ion  26 gives 
the average random error in f requency after K C e  inter- 
polation. The error is expressed as a percentage of the 
channel  spacing (Eq. 4) in the non-zero-filled spectrum. 
In this work, the integral in Eq. 25 was evaluated nu- 
merically with the use of an increment  A~b = ~/100. The  
r a n d o m  errors were only calculated for the optimal val- 
ues of e, i.e., the values of e which gave the lowest sys-  
t e m a t i c  errors, as described above. 

Preceding sections lay the theoretical  framework for 
K C e  interpolation, and for deriving the associated sys- 
tematic  and random errors. The following sections de- 
scribe the application of this framework to specific apo- 
dized line shapes. 

O P T I M A L  K C e  F U N C T I O N  F O R  
I N T E R P O L A T I O N  OF H A N N I N G - A P O D I Z E D  
M A G N I T U D E  S P E C T R A  

The Hanning Window and the Hanning-Apodized Line 
Shape. The  Hanning  window is suitable for spectra with 
dynamic  ranges of up to 30:1.11 The  Hanning  window, 
Hn(t) ,  is defined by Eq. 27:12 

Hn(t)  = sin20rt/T) 
= [1 - cos(27rt/T)]/2, 0 < t < T. (27) 

The  analytical magni tude  spectrum, CHR(¢0), the modulus  
of the complex Fourier  t ranform, of the t ime-domain  
signal, which was windowed with the Hanning  window 
(Eq. 27), prior to Fourier  t ransformation,  is given by Eq. 
28: 

CHn(O)) = Kr[1 - 2 e x p ( - T / ' r ) c o s [ ( w  - ~o)T] 

+ e x p ( -  2T/r)]  '/2 

x Ao + Atw + A2w 2 + A3¢03 A- A4604 -{- Asw ~ + A6w 6 

where: 

A o = 

A 1 ~-- 

A2 = 

A 3 
A 4 -~ 
A5 = 
A 6 ~- 

(28) 

T6T460o 6 - -  8T6T27r260o 4 

-4- 3T4T460o 4 -4- 16T6~460o 2 

-}- 3r2T460o 2 -4- 16r4~'4+8~-2T271-2 -4- T 4 (29) 

- 6~T%oo  ~ + 32r6T%r%0o 3 
- 12v4T4~oo 3 - 32r6~4¢% - 6r2T4o~o (30) 
15.r6T4wo 4 -- 48r6T%r2wo2 
+ 18r4T4o~o 2 + 16~'%r 4 + 3r2T 4 (31) 

-20~6T4o~o 3 + 32r6T%r%~o - 12r4T%o (32) 

15~'~T4o~o 2 - 8r6T%r 2 + 3r4T 4 (33) 

-6~6T%oo (34) 

T6T 4. (35) 

Equat ion  28 gives the continuous,  Hanning-apodized,  
magni tude  line shape as a funct ion of the parameters  of 
Eq. 1. I t  is taken from the literature. 7 

Systematic Errors for KCe Interpolation of the Hanning 
Line Shape. The  systematic errors for the Hanning  line 
shape can be calculated by subst i tut ing Eq. 36 into Eq. 
20. 

C(o~) = CH,(O~m) (Eq. 28), 
m = m -  1, m , m  + 1. (36) 

The  above procedure was used to find the optimal value 
of the K C e  exponent  e for the Hanning-apodized line 
shape. The  results of a coarse and a fine search for the 
opt imal  value of e are given in the second column of 
Table I. The  optimal value of the K C e  exponent  for K C e  
interpolat ion of Hanning-apodized line shapes is 5.5. Fig- 
ure 2 shows the analytically calculated, residual worst- 
case systematic errors, for whatever value of ~b (Eq. 10) 
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t ha t  gave tha t  error, as a funct ion of the damping ratio, 
T/T, for KC5.5 interpolat ion of a zero-filled, Hanning- 
apodized magni tude  spec t rum and the corresponding 
calculated worst-case errors for parabolic interpolat ion 
(e = 1). Note tha t  the KC5.5 errors are lower than  the 
parabolic errors by about  a factor of 15. Note fur ther  
that ,  for both  KC5.5 interpolat ion and parabolic inter- 
polation, the residual systematic errors are lowered by 
about  an order  of magni tude  for each addit ional  level of 
zero-filling. 

The  random error for KC5.5 interpolat ion of the non- 
zero-filled Hanning  line shape for a signal-to-noise ratio 
(SNR) of 30:1 is indicated in Fig. 3. This  error is derived 
from the OKC data  of Fig. 2. The  maximum SNR for 
which the Hanning  window is suitable is 30:1. n This  error 
is inversely proport ional  to SNR and will be greater  for 
lower SNRs. Note  tha t  the random error  in the graph is 
greater  than  the systematic error. 

Random Errors for KCe Interpolation of the Hanning 
Line Shape. The  random error was calculated from Eq. 
26 by subst i tut ing Eq. 36 into Eqs. 22-24. The  results 
are graphically displayed in Fig. 2. Figure 2 shows the 
analytically calculated, average random errors as a func- 
t ion of the damping ratio, T/T, for KC5.5 interpolat ion 
of a zero-filled, Hanning-apodized magni tude  spectrum 
and the corresponding average errors for parabolic in- 
terpolat ion (e = 1). These  errors are inversely propor-  
t ional to the presumed SNR and are shown in Fig. 2 for 
an SNR = 100. The  errors are expressed as a percentage 
of the non-zero-filled channel  spacing. Note  tha t  the 
KC5.5 errors are about  the same as the parabolic errors 
except  for no zero-filling, where the KC5.5 errors are 
slightly greater. Unlike the systematic errors shown in 
Fig. 3, the random errors in Fig. 2 are essentially inde- 
penden t  of the interpolat ing function. Note  tha t  for bo th  
KC5.5 interpolation and for parabolic interpolation, more 
zero-filling increases the random error. 

The  lowest random error for KCe interpolat ion is for 
the no zero-filling case. Figure 2 was derived for SNR = 
100:1 for easy comparison with Figs. 5 and 8. Since the 
Hanning window should only be used if SNR < 30:1, H 
we have indicated the random error for the optimal  case 
(OKC) for SNR = 30:1 in Fig. 3. 

O P T I M A L  KCe F U N C T I O N  FOR 
I N T E R P O L A T I O N  OF  H A M M I N G - A P O D I Z E D  
M A G N I T U D E  S P E C T R A  

The Hamming Window and the Hamming-Apodized 
Line Shape. The  Hamming  window has been recom- 
mended  as suitable for spectra  with dynamic ranges of 
up to 100:1.11 The  Hamming  window, Hm(t) ,  is defined 
by Eq. 3792 
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SYSTEMATIC FREQUENCY ERROR FOR 
PARABOLIC AND KC5.5 INTERPOLATED 
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FIc. 3. Systematicfrequencyerrorsforparabolic(Pcurves)andKC5.5 
(KC curves) interpolation of the zero-filled, Hanning-apodized, mag- 
nitude line shape as a function of T/r. The errors are expressed as a 
percentage of the channel spacing in the non-zero-filled discrete spec- 
trum (Eq. 3). The curves give the maximum frequency error remaining 
after interpolation of the Hanning-apodized, zero-filled discrete line 
shape. For example, curve 2KC gives the maximum frequency error 
remaining after KC5.5 interpolation of the Hanning-apodized, twice- 
zero-filled, discrete magnitude spectrum. Curve 0P gives the maximum 
frequency error remaining after parabolic interpolation of the Hanning- 
apodized, non-zero-filled, discrete magnitude spectrum. These error 
curves were calculated from the absolute values of Eqs. 21 and 36, with 
e = 1 for the P curves and e = 5.5 for the KC curves. The errors in 
this figure presume an infinite signal-to-noise ratio and should be added 
to the random errors given in Fig. 3 to predict the total error for a 
given experimental situation. The arrow indicates the random error, 
derived from the OKC data in Fig. 2, for SNR = 30. 

Hm(t )  = 0.54 - 0.46 cos(27rt/T), 0 < t<T. (37) 

The  analytical  magni tude  spectrum, CHm(o~), the mod- 
ulus of the complex Fourier  t ransform, of the t ime-do- 
main signal (Eq. 1), which was windowed with the Ham-  
ming window (Eq. 37), prior to Fourier  t ransformation,  
is given by Eq. 38 (see below). 

Csm(W) = Kr[1 - 2 exp(-T/r )cos[(¢0 - 00o)T] + exp(-2T/r)] 1/2 

(0.54)2 2(0.54)(0.46)[1 + r2[(¢0 - ¢Oo) 2 + 4~r2/T 2] + (o~ - O~o)2T2[1 + T2((o~ - O~o) 2 - 4~r2/T2)]] 

x 1 + (oJ - O~o)2T 2 - [[1 + (w - ¢oo)2T2]{1 + 2T2[(¢0 - Wo) 2 + 47r2/T 2] + T4[(w - ~o) 2 - 47r2/T212}] 

(0.46)2[(1 + T2((w -- ~0)2 + 41r2/T2))2+(w -- Wo)2r2(1 + T2((w - Wo)2 -- 47r2/T2))2]] '/2 
+ 

iX + 2 r T [ ( ~  - ~o)2 + 41r2/T 2] + T4[(w - W-o)-2 --4~.2/T2]---~]-~ ] 
(38) 
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SYSTEMATIC FREQUENCY ERROR FOR 
PARABOLIC AND KC6.6-1NTERPOLATED 

HAMMING-APODIZED MAGNITUDE MODE 
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RANDOM FREQUENCY ERRORS FOR PARABOLIC 
AND KC6.6 INTERPOLATED HAMMING-APODIZED 

MAGNITUDE MODE 
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FIG. 4. Systematic frequency errors for parabolic (P curves) and KC6.6 
(KC curves) interpolation of the zero-filled, Hamming-apodized mag- 
nitude line shape as a function of T/r. The errors are expressed as a 
percentage of the channel spacing in the non-zero-filled discrete spec- 
trum (Eq. 3). The curves give the maximum frequency error remaining 
after interpolation of the Hamming-apodized, zero-filled discrete line 
shape. For example, curve 2KC gives the maximum frequency error 
remaining after KC6.6 interpolation of the Hamming-apodized, twice- 
zero-filled, discrete magnitude spectrum. Curve 0P gives the maximum 
frequency error remaining after parabolic interpolation of the Ham- 
ming-apodized, non-zero-filled, discrete magnitude spectrum. These 
error curves were calculated from the absolute values of Eqs. 21 and 
39 with e = 1 for the P curves and e = 6.6 for the KC curves. The errors 
in this figure presume an infinite signal-to-noise ratio and should be 
added to the random errors given in Fig. 5 to predict the total error 
for a given experimental situation. The arrows indicate the random 
error, derived from the OKC data in Fig. 5, for SNR = 10 and SNR = 
100. 

Equation 38 gives the continuous Hamming-apodized 
magnitude line shape as function of the parameters of 
Eq. 1. It is presented here for the first time. 

Systematic Errors for KCe Interpolation of the Ham- 
ming Line Shape. The above procedure was used to find 
the optimal value of the KCe exponent e for the Ham- 
ming-apodized line shape by substituting Eq. 39 into Eq. 
20. The results of a coarse and a fine search 

C(o~m) = Cum(O~=) (Eq. 38), 
r e = m -  1, m , m  + 1, (39) 

for the optimal value of e are given in the third column 
of Table I. The optimal value of the KCe exponent for 
KCe interpolation of Hamming-apodized line shapes is 
6.6. Figure 4 shows the analytically calculated, residual 
worst-case systematic errors as a function of the damping 
ratio, T/r, for KC6.6 interpolation of a zero-filled, Ham- 
ming-apodized magnitude spectrum and the correspond- 
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FIG. 5. Random frequency errors for parabolic (P curves) and KC6.6 
(KC curves) interpolation of the zero-filled, Hamming-apodized mag- 
nitude line shape as a function of T/r. The errors are expressed as a 
percentage of the channel spacing in the non-zero-filled discrete spec- 
trum (Eq. 3). The curves give the average random frequency error 
remaining after interpolation of the Hamming-apodized, zero-filled, 
discrete line shape for which the noise level is 1% of the peak maximum 
(SNR = 100). For example, curve 2KC gives the average frequency 
error remaining after KC6.6 interpolation of the Hamming-apodized, 
twice-zero-filled, discrete magnitude spectrum. Curve 0P gives the av- 
erage frequency error remaining after parabolic interpolation of the 
Hamming-apodized, non-zero-filled, discrete magnitude spectrum. 
These error curves were calculated from Eqs. 22 and 39 with e = 1 for 
the P curves and e = 6.6 for the KC curves and then averaged according 
to Eqs. 25 and 26 as described in the text. The errors in this figure 
arise from the finite signal-to-noise ratio of the experimental data and 
should be added to the systematic errors given in Fig. 4 to predict the 
total error for a given experimental situation. The errors in this figure 
are proportional to the noise level (Eq. 24) and would be 10 times less 
for an SNR of 1000, 10 times greater for an SNR of 10, etc. 

ing worst-case errors for parabolic interpolation (e = 1). 
The parabolic errors were previously derived 4 by nu- 
merical techniques. Note that  the KC6.6 errors are lower 
than the parabolic errors by about a factor of 40. Note 
further that  the residual systematic errors are lowered 
by about an order of magnitude for each additional level 
of zero-filling. 

The random errors for KC6.6 interpolation of the non- 
zero-filled Hamming line shape for SNRs of 10 and 100 
are indicated in Fig. 4. These errors are taken from the 
OKC data of Fig. 5. Note that  the random errors are 
greater than the systematic error. 

Random Errors for KCe Interpolation of the Hamming 
Line Shape. The random error was calculated from Eq. 
26 by substituting Eq. 39 into Eqs. 22-24. The results 
are graphically displayed in Fig. 5. Figure 5 shows the 
analytically calculated, average random errors as a func- 
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t ion  of  the  d a m p i n g  rat io,  T/r,  for KC6.6 i n t e rpo la t ion  
of  a zero-filled, H a m m i n g - a p o d i z e d  m a g n i t u d e  s p e c t r u m  
and  the  co r r e spond ing  average  errors  for  parabol ic  in- 
t e rpo la t ion  (e = 1). T h e s e  errors  are  inverse ly  p ropor -  
t iona l  to  the  p r e s u m e d  S N R  and  are shown in Fig. 5 for 
S N R  = 100:1. T h e  er rors  are  expressed  as a pe rcen tage  
of  the  non-zero-f i l led  channe l  spacing.  N o t e  t h a t  the  
KC6.6 errors  are a b o u t  the  same  as the  parabol ic  errors  
excep t  for  no zero-filling, for  which  the  KC6.6 errors  are  
s l ight ly  greater .  Unl ike  the  sys t ema t i c  errors  shown in 
Fig. 4, the  r a n d o m  errors  in Fig. 5 are essent ia l ly  inde-  
p e n d e n t  o f  the  in te rpo la t ing  func t ion .  N o t e  tha t ,  for b o t h  
KC6.6 in terpola t ion  and  for parabol ic  in terpolat ion,  more  
zero-fil l ing increases the  r a n d o m  error.  

T h e  lowest  r a n d o m  error  for  K C e  in te rpo la t ion  is for 
the  no zero-fil l ing case. F igure  5 was der ived  for  S N R  = 
100:1, which  is the  same  S N R  used for  Figs. 3 a nd  8. 
Since the  H a m m i n g  window is sui table  for  spec t ra  wi th  
d y n a m i c  ranges  of  up  to  100:1, t he  r a n d o m  errors  for  no  
zero-fil l ing (OKC) and  S N R  = 100 and  10 are  also indi-  
ca t ed  in Fig. 4. 

O P T I M A L  K C e  F U N C T I O N  
F O R  I N T E R P O L A T I O N  O F  
B L A C K M A N - H A R R I S - A P O D I Z E D  
M A G N I T U D E  S P E C T R A  

The  Blackman-Harris Window and the Blackman-Har- 
ris-Apodized Line Shape. T h e  B l a c k m a n - H a r r i s  w indow 
has  been  r e c o m m e n d e d  as sui table  for  d y n a m i c  ranges  
o f  100:1 to  1000:111 T h e  B l a c k m a n - H a r r i s  window,  BH( t ) ,  
is def ined by  Eq.  40. ~2 

B H ( t )  = 0.42323 - 0.49755 cos(2~rt/T) 
+ 0.07922 cos(47rt/T), 0 < t < T. (40) 

T h e  ana ly t ica l  m a g n i t u d e  spec t rum,  CBH(00), the  m o d u l u s  
o f  the  complex  Four i e r  t r ans fo rm,  of  the  t i m e - d o m a i n  
signal  (Eq. 1), which  was windowed  wi th  the  B l a c k m a n -  
Har r i s  window (Eq. 40), p r ior  to  Four i e r  t r ans fo rma t ion ,  
is given by  Eq.  41 (see below),  where:  

A1 = r2((00 - 000) 2 q- 47r2/T 2) (42) 

As = r2((00 - 000) 2 - 47r2/T 2) (43) 
A3 = r2((w - 000) 2 + 161r2/T 2) (44) 
A4 = r2((00 - 000) 2 - 167r2/T2). (45) 
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Fic. 6. Systematic frequency errors for parabolic (P curves) and KC9.5 
(KC curves) interpolation of the zero-filled, Blackman-Harris-apo- 
dized, magnitude line shape as a function of T/r. The errors are ex- 
pressed as a percentage of the channel spacing in the non-zero-filled 
discrete spectrum (Eq. 3). The curves give the maximum frequency 
error remaining after interpolation of the Blackman-Harris-apodized, 
zero-filled discrete line shape. For example, curve 2KC gives the max- 
imum frequency error remaining after KC9.5 interpolation of the 
Blackman-Harris-apodized, twice-zero-filled, discrete magnitude spec- 
trum. Curve 0P gives the maximum frequency error remaining after 
parabolic interpolation of the Blackman-Harris-apodized, non-zero- 
filled, discrete magnitude spectrum. These error curves were calculated 
from the absolute values of Eqs. 21 and 46 with e = 1 for the P curves 
and e = 9.5 for the KC curves. The errors in this figure presume an 
infinite signal-to-noise ratio and should be added to the random errors 
given in Fig. 8 to predict the total error for a given experimental 
situation. The arrows indicate the random error, derived from the OKC 
data in Fig. 8 for SNR = 100 and SNR = 1000. 

CB.(w) = K~[1 - 2 e x p ( - T / r ) c o s [ ( w  - 00o)T] + e x p ( - 2 T / T ) ]  '/2 

(0.42323)2 (0.49755)2[(1 + A1) 2 + (00 - 00o)2r2(1 + A2) 2] 

x 1 + (00 - 00o)2r 2 + (I + 2AI + A22) 2 

(0.07922)2[(1 + A3) 2 + (00 - 00o)2r2(1 + A4) 2] + 
(i + 2A3 + A42) 2 

2(0.49755)(0.42323)[1 + A, + (00 - ¢Oo)2V2(i + A2)] 

(I + (00 - 00o)2~2)(I + 2A, + A~ 2) 

2(0.07922)(0.42323)[(1 + A3 + (00 - ¢Oo)2r2(1 + A4)] + 
(I + (00 - 00o)2V2)(i + 2A3 + A42) 

2(0.07922)(0.49755)[(1 + A3)(I + A,) + (00 - ¢Oo)2V2(I + A4)(I + A2)]~ '/2 
- / (41) 
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FIG. 7. Three-term-Blackman-Harris-apodized magnitude line shape and interpolating KC6.6 function. The K06.6 function is the optimal KCe 
function for interpolation of the Hamming line shape. Curve C is the continuous magnitude line shape given by Eq. 41, with T/r = 1.0. The 
crosses are the values in the non-zero-filled discrete magnitude spectrum for a value of the frequency shift factor ¢~/T = ~-/2. This value of ep/T 
gives the largest systematic error. The discrete spectrum is only defined at the discrete frequencies given by Eq. 3. m is the index of the discrete 
spectrum (Eq. 3). Curve KC6.6 is the continuous KC6.6 function calculated from Eq. 9. The three boldface crosses are the values in the discrete 
spectrum which were used with Eqs. A1-A3 of the appendix to determine the parameters of curve KC6.6. Note that over the region from m - 
3 to m + 3, curve KC6.6 is virtually a perfect fit to curve CB.. The right-hand inset shows the KC6.6 function and the continuous magnitude 
Blackman-Harris line shape, Ca., over the small region from wm to ¢%+o5, indicated by a dotted rectangle at the top of the main figure. The scale 
in this inset, both horizontally and vertically, is expanded by a factor of ten. Note the very slight mismatch between CB. and KC6.6. The left 
inset was created like the right inset, but for the KC9.5 function. KC9.5 is the optimal KCe function for interpolation of the Blackman-Harris 
line shape (Table I). Within the scale and penwidth limits of the left inset, the KC9.5 function is indistinguishable from CB.. 

Equa t ion  41 gives the  cont inuous B lackman-Har r i s -  
apodized magn i tude  line shape  as funct ion of the pa r am-  
eters  of Eq. 1. I t  is p resen ted  here for the  first t ime.  

Systematic Errors for KCe Interpolation of the Black- 
man-Harris Line Shape. T h e  above procedure  was used 
to find the  op t ima l  value of the  K C e  exponen t  e for the  
Blackman-Harr i s -apodized  line shape by  subst i tut ing Eq. 
46 into Eq. 20. The  resul ts  of a coarse and  a fine search 

C(w~) = CBH(¢0~) (Eq. 41), 
m = m - -  l , m , m  + l ,  (46) 

for the  op t imal  value of e are given in the  four th  column 
of Tab le  I. T h e  op t imal  value of the  K C e  exponen t  for 
K C e  in terpola t ion  of B lackman-Har r i s - apod ized  line 
shapes  is 9.5. Figure 6 shows the  analyt ical ly calculated,  
residual  worst-case sys temat ic  errors  as funct ion of the  
damp ing  ratio, T/% for KC9.5 in terpola t ion  of a zero- 
filled B lackman-Har r i s - apod ized  magn i tude  spec t rum 
and  the  corresponding worst-case errors for parabol ic  
in terpola t ion  (e = 1). T h e  parabol ic  errors  were previ-  
ously der ived t by  numer ica l  techniques.  No te  t h a t  the  
KC9.5 errors are lower t han  the  parabol ic  errors  by  abou t  
a factor  of 80. Note  fur ther  t ha t  the  residual  sys temat ic  
errors  are lowered by  abou t  an order  of magni tude  for 
each addi t ional  level of zero-filling. 

T h e  r a n d o m  errors for KC9.5 in terpola t ion  of the  non- 
zero-filled B lackman-Har r i s  line shape,  for SNRs  of 100 
and  1000, are indicated in Fig. 6. These  errors  are t aken  
f rom the OKC da ta  of Fig. 5. No te  t ha t  the  r a n d o m  errors 
are grea ter  t han  the  sys temat ic  error for bo th  cases. 

Figure 7 graphical ly  displays the efficacy of K C e  in- 
terpola t ion,  even for nonop t ima l  K C e  functions.  Figure 
7 shows a B lackman-Har r i s - apod ized  line shape,  CBH, 
calculated f rom Eq. 41 with T/-r = 1.0. T h e  crosses in the  
figure are the  discrete  magn i tude  values in the  non-zero-  

filled discrete  spec t rum for ¢ / T  (Eq. 10) = ~/2. T h e  three  
boldface crosses are the  three  largest  intensi t ies on the  
line shape  in the  discrete  spec t rum.  Also displayed in 
the  figure is the  KC6.6 funct ion calculated f rom the three  
discrete  largest  intensi t ies  via Eqs.  A1-A2 of the  appen-  
dix. No te  tha t ,  even though  the  KC9.5 is the  op t imal  
K C e  in terpola t ing  funct ion for CBH (Table  I and  Fig. 6), 
the  KC6.6 funct ion is a r e m a r k a b l y  good mimic  for the  
line shape.  T h e  r ight  inset  of the  figure shows the  boxed 
region a t  the  peak  m a x i m u m ,  expanded  by  a factor  of  
10. Note  the very slight misma tch  between CB. and KC6.6, 
which is evident  a t  this  expanded  scale. T h e  left  inset  
shows the  same expanded  region bu t  for a f i t ted KC9.5 
function.  KC9.5 is the  op t imal  K C e  funct ion for the  CBH. 
Even  on this  expanded  scale, KC9.5 and CBH are indis- 
t inguishable.  

Random Errors for KCe Interpolation of the Blackman- 
Harris Line Shape.  T h e  r a n d o m  error  was calculated 
f rom Eq. 26 by  subs t i tu t ing  Eq. 46 into Eqs. 22-24. T h e  
resul ts  are graphical ly  displayed in Fig. 8. Figure 8 shows 
the  analyt ical ly calculated,  average r a n d o m  errors as 
funct ion of the  damp ing  ratio, T/r ,  for KC9.5 in terpo-  
lat ion of a zero-filled, B lackman-Har r i s - apod ized  mag-  
n i tude  spec t rum and the  corresponding calculated av- 
erage errors  for parabol ic  in terpola t ion  (e = 1). These  
errors  are inversely propor t iona l  to the  p r e sumed  S N R  
and  are shown in Fig. 8 for S N R  = 100. T h e  errors are 
expressed as a percen tage  of the  non-zero-fi l led channel  
spacing. Note  t h a t  the  KC9.5 errors are abou t  the  same 
as the  parabol ic  errors  except  for no zero-filling, where  
the  KC9.5 errors are slightly greater .  Unl ike  the  sys tem-  
atic errors  shown in Fig. 6, the  r a n d o m  errors in Fig. 8 
are essential ly i ndependen t  of  the  in terpola t ing  function.  
Note  tha t ,  for bo th  KC9.5 in terpola t ion  and  for parabol ic  
in terpolat ion,  more  zero-filling increases the  r a n d o m  
error. 
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The lowest random error for KCe interpolation of the 
Blackman-Harris line shape is for the no zero-filling case. 
Figure 8 was derived for SNR = 100:1, which is the same 
SNR used for Figs. 3 and 5. Since the Blackman-Harris 
window is suitable for spectra with dynamic ranges span- 
ning 100:1 to 1000:1," the random errors for OKC inter- 
polation for SNR = 100 and SNR = 1000 are also indi- 
cated on Fig. 6. 

DISCUSSION 

Choice of Window and Dynamic Range of the Spectrum. 
The "natural" magnitude line shape, Eq. 5, which is the 
magnitude Fourier transform of Eq. 1, is notorious for 
its broad skirt of intensity, which extends for many line 
widths away from the peak center. 1'-13 This skirt exists 
both for undamped and heavily damped time signals. " 3  
The broad skirt of one peak overlaps nearby peaks and 
can even obscure nearby small peaks. The skirt can be 
minimized by a process called windowing in the time 
domain or apodization in the frequency domain. The 
time signal, Eq. 1, is multipled by a so-called window 
function prior to Fourier transformation. After Fourier 
transformation, the resultant "apodized" line shape has 
a much reduced skirt. Dozens of window functions have 
been described in the literature, 12 but little has been said 
about the criteria for choosing one particular window 
over others. Recently, we have proposed a "dynamic range 
criterion" for choosing which particular window function 
is most appropriate in a given experimental case. Ac- 
cording to this criterion, the window function should be 
chosen to match the dynamic range of the spectrum. The 
dynamic range of the spectrum is the SNR of the largest 
peak or the ratio of the largest peak to the smallest peak 
of interest. The dynamic range of the window is approx- 
imately the ratio of the center peak to the largest aux- 
iliary maximum. ~,~3 Since each window function has its 
own dynamic range, 1~ matching the window to the spec- 
trum will give apodized spectra with the minimal line 
width, consistent with low spectral interference between 
peaks. We can recommend 1~ the Hanning window for 
spectra with dynamic range <30, the Hamming window 
for spectra with 30 < dynamic range < 100, the Black- 
man-Harris window for spectra with 100 < dynamic range 
< 1000, and the Kaiser-Bessel window for spectra with 
1000 < dynamic range. The set comprised of only these 
four windows is suitable for apodizing spectra which span 
over three decades of dynamic range. Accordingly, we 
have selected the line shapes corresponding to these four 
windows for examination in the present work. 

The engineering literature TM describes many windows 
and gives the corresponding apodized line shape when 
the window is applied to an undamped transient. As 
damped transients are common in chemical spectros- 
copy, we have derived the analytical form of the corre- 
sponding apodized line shape. The line shape for the 
Hanning-windowed (Eq. 28), damped transient was first 
given in Ref. 7. The analytical line shapes for the Ham- 
ming-windowed (Eq. 38) and the Blackman-Harris-win- 
dowed (Eq. 41) damped transients are first presented in 
this work. 

Significance of Damping Ratio T/r. In experimental 
practice, the time-domain signal, Eq. 1, can have any 
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FIG. 8. Random frequency errors for parabolic (P curves) and KC9.5 
(KC curves) interpolation of the zero-filled, Blackman-Harris-apod- 
ized, magnitude line shape as a function of T/r. The errors are expressed 
as a percentage of the channel spacing in the non-zero-filled discrete 
spectrum (Eq. 3). The curves give the average random frequency error 
remaining after interpolation of the Blackman-Harris-apodized, zero- 
filled discrete line shape for which the noise level is 1% of the peak 
maximum (SNR = 100). For example, curve 2KC gives the average 
frequency error remaining after KC9.5 interpolation of the Blackman- 
Harris-apodized, twice-zero-filled discrete magnitude spectrum. Curve 
0P gives the average frequency error remaining after parabolic inter- 
polation of the Blackman-Harris-apodized, non-zero-filled, discrete 
magnitude spectrum. These error curves were calculated from Eqs. 22 
and 46 with e = 1 for the P curves and e = 6.6 for the KC curves and 
then averaged according to Eqs. 25 and 26 as described in the text. 
The errors in this figure arise from the finite signal-to-noise ratio of 
the experimental data and should be added to the systematic errors 
given in Fig. 6 to predict the total error for a given experimental 
situation. The errors in this figure are proportional to the noise level 
(Eq. 24) and would be 10 times less for an SNR of 1000, 10 times greater 
for an SNR of 10, etc. 

degree of damping, as characterized by the damping con- 
stant, T/r. T/r = 0 describes an undamped transient; T/~ 
= 3.0 describes a transient which has decayed to 5 % of 
its initial value and is essentially completely damped. 
The present work, which allowed for 0 < T/r < 3 for 
systematic errors and 0 < T/r < 5 for random errors, 
thus essentially covers all possible cases from undamped 
to completely damped transients. While it is possible to 
use very long acquisition times to achieve large damping 
ratios, it is unproductive to do so, since past T/r --- 3 
there is virtually no signal left to acquire. 

Since this damping ratio varies from spectrum to spec- 
trum, and even from peak to peak within a given spec- 
trum, we feel that  any apodization/interpolation scheme 
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TABLE II. Maximum systematic frequency error (T/r = 0-3.0) a for 
interpolation of apodized magnitude line shapes. 

Interpolating Magnitude 
scheme Parabolic b Lorentzian c KCe d 

Window % % % 
Rectangle e O f 23.397g 0.0 h 17.842 

1 1.632g 5.430 h 0.690 
2 0.183g 0.610 h 0.066 
3 0.022g 0.073 h 0.008 

Harming 0 5.281g 14.347g 0.342 
1 0.632g 1.745g 0.031 
2 0.078g 0.215g 0.004 
3 0.010g 0.027g 0.0005 

Hamming 0 6.800g 16.774g 0.306 
1 0.811 g 2.109g 0.027 
2 0.099g 0.261g 0.003 
3 0.012g 0.033g 0.0004 

Blackman- 0 4.560g 10.516g 0.041 
Harris 1 0.558~ 1.320~ 0.006 

2 0.069g 0.165g 0.0007 
3 0.008g 0.021g 0.0001 

o Maximum systematic frequency error, for whatever value of T/v and 
whatever value of ~b that gave the largest error, expressed as a per- 
centage of the channel spacing (Eq. 4) in the non-zero-filled discrete 
spectrum. 

h From Eq. 21 (e = 1). 
c From Eq. 21 (e = - 1/2 ) or Eq. 36 of Ref. 4. 
d From Eq. 21. The errors shown in the table are for whatever value of 

e that gave the best results for each window (Table I) except for the 
rectangle window for which e = 6.6. 

° Unapodized line shape. 
f Number of zero-fillings after windowing, prior to Fourier transfor- 
mation. 
These cases have been previously examined 4 by numerical methods. 

h These cases have been previously examined 3 by analytical methods. 

should best  operate  independen t  of this ratio. We have 
previously shown tha t  the dependence  of apodizat ion 
efficiency is essentially independen t  of T/r  (compare figs. 
1 and 2 of Ref. 13). In this work we have examined the 
dependence  of in terpolat ion efficacy over the range of 
TIT values which can occur in pract ice and have shown 
tha t  this efficacy is esentially independen t  of TIT (see 
Figs. 2, 4, and 6). As a consequence,  one can recommend 
a par t icular  windowing funct ion on the basis of only the 
dynamic  range of the spec t rum ~1 and can then  chose from 
Table  I the KCe interpolat ing funct ion which minimizes 
the systematic  in terpolat ion error  for t ha t  window. 

S y s t e m a t i c  Errors  for K C  Interpolat ion .  The  experi- 
menta l  Four ier  me thod  has a systematic error arising 
f rom the  discrete na ture  of the exper imenta l  Fourier  
spec t rum (see Figs. 1 and 7). This  error can be minimized 
by  zero-filling 2 and/or  by interpolat ion.  We have previ- 
ously examined 4 the efficacy with which the parabola  (Eq. 
6), the Lorentz ian  funct ion (Eq. 7), and the magnitude-  
Lorentz ian  (Eq. 8) in terpola te  towards the t rue  location, 
w0, of the spectral  peak. For  apodized spectra,  we found 
tha t  the parabola  is the  interpolat ing funct ion with the 
lowest residual error. Because the parabola  is the best  
previously examined interpola t ion function,  4 we have 
compared  the efficacy of KCe in terpolat ion with tha t  of 
parabolic in terpola t ion in the present  work. 

The  process called zero-filling involves increasing the 
length of the original discrete da ta  set by  adding a set 
of zeros at  the end. Each  addit ional  zero-filling doubles 
the length of the "zero-filled t ime-domain  da ta  set." Af- 

ter  Fourier  t ransformat ion,  the length of the discrete 
f requency spect rum is also doubled for each zero-filling, 
and the channel  spacing in the discrete f requency spec- 
t rum is halved. Each  addit ional  level of zero-filling then  
provides an addit ional  discrete intensi ty  between each 
two adjacent  discrete intensities. 1,2 For  example,  for Figs. 
1 and 7, which show the discrete intensities in the non- 
zero-filled spectrum, one addit ional  zero-filling would 
give an addit ional  discrete in tensi ty  halfway between m 
- 1 and m and also halfway between m and m + 1. Since 
addit ional  zero-filling gives a set of three  discrete inten- 
sities which are closer to the cont inuous frequency,  ~0o, 
t han  the set of three  intensit ies in the less zero-filled 
spectrum, it is not  surprising tha t  zero-filling prior to 
in terpolat ion reduces the residual systematic  f requency 
error  of th ree-po in t  interpolat ion.  This  is t rue  both  for 
parabolic in terpola t ion and KCe in terpola t ion (see Figs. 
2, 4, and 6). Examina t ion  of Figs. 2, 4, and 6 and Table  
II indicates tha t  each addit ional  level of zero-filling low- 
ers the systematic  error by  about  an order  of magnitude.  
I t  should be noted,  though,  t ha t  the random error  in the 
discrete magni tude  intensities is not  affected by zero- 
filling. 1 

For  each of the three  apodized line shapes discussed 
above, KCe in terpola t ion gives a much  be t te r  est imate 
of the t rue  cont inuous frequency,  ¢00, t han  does parabolic 
interpolat ion.  A comparison of the residual systematic  
errors remaining after  KCe in terpola t ion with the cor- 
responding errors remaining after  parabolic interpola- 
t ion is given in Table  II. Table  II lists the worst-case 
systematic  error,  for whatever  value of ¢ (Eq. 10) and 
whatever  value of T/r  t ha t  gave tha t  error,  for interpo- 
lation of discrete magni tude  intensities. Also listed for 
comparison are the errors for in terpola t ion of the "na t -  
ura l"  (rectangle-apodized) line shape. For  the Hanning-  
apodized line shape, KC5.5 in terpola t ion of the non-zero- 
filled spectrum gives a worst-case residual error of 0.342 % 
of the non-zero-fil led channel  spacing, which is fifteen 
t imes lower than  the corresponding error for parabolic 
in terpolat ion (5.281%). Similarly, KC6.6 in terpolat ion 
of the Hamming  apodized line shape of the non-zero- 
filled spectrum gives a worst-case residual error of 0.306 % 
of the non-zero-fil led channel  spacing, which is twenty  
t imes lower than  the corresponding error  for parabolic 
interpolation (6.80 % ). The  corresponding error for KC9.5 
in terpola t ion of the Blackman-Harr i s  line shape is 
0.041%, which is eighty t imes less t ha t  the corresponding 
error for parabolic in terpola t ion (4.56%). In all cases 
then,  KCe in terpola t ion of  the apodized line shape is 
significantly more accurate than  parabolic interpolat ion,  
the best  previously examined 4 interpolat ion scheme for 
apodized line shapes. 

R a n d o m  Errors  for K C e  Interpolat ion .  In this work we 
wished to examine the to ta l  range of dampings from no 
damping to complete  damping in order  to cover all cases 
which could occur in exper imenta l  practice. A t rans ien t  
which has decayed to 5% of its initial value (T/~ = 3.0) 
is essentially completely damped  and we have used T/r  
= 3.0 as a pract ial  upper  l imit for examining the system- 
atic error  in KCe in terpolat ion (see Figs. 2, 4, and 6). 
When  examining the random error,  we noticed a slight 
bu t  consis tent  increase in error with increasing damping 
and for this reason we ex tended  the s tudy of r andom 
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errors (Figs. 3, 5, and 8) to T/r = 5.0. As can be seen 
from these figures, no marked increases occur, as the 
behavior of the curves over the range 3.0 < T/T < 5.0 
can be predicted by extrapolation from the range T/r < 
3.0. 

A characteristic of the random error graphs (Figs. 3, 
5, and 8) is that the random error depends little upon 
window function. This is evident from the curves in any 
one of these figures, which compare the random error of 
parabolic interpolation with that  of KCe interpolation. 
It is also evident from comparisons among these figures, 
which show the random error for different KCe functions. 
For KCe interpolation of a non-zero-filled spectrum whose 
SNR = 100, the random frequency error is close to 1.5% 
of a channel spacing in all cases. It appears that, in gen- 
eral, the random error for three-point interpolation de- 
pends only slightly upon either window function or upon 
interpolation function. 

As was the case for systematic errors, the random errors 
for KCe interpolation are essentially independent of the 
damping ratio T/r (see Figs. 3, 5, and 8). 

As mentioned above, zero-filling prior to interpolation 
decreases the residual systematic interpolation error 
(Figs. 2, 4, and 6 and Table II). On the other hand, 
additional zero-filling increases the residual random in- 
terpolation error (Figs. 3, 5, and 8). In all cases examined 
here (Figs. 3, 5, and 8), each additional level of zero- 
filling roughly doubles the random error. Zero-filling of 
a magnitude spectrum does not change the random un- 
certainties of the individual discrete spectral intensities.1 
Zero-filling just adds more discrete spectral intensities2 
This increase in the random frequency error with greater 
zero-filling has also been noted for the exact interpola- 
tion of the unapodized magnitude line shape, Eq. 5.14 

The increase in the random frequency error with great- 
er zero-filling requires some explanation. The present 
work utilizes three-point fitting of a parabola (Eqs. 16 
and A1-A3). Perhaps the most facile argument for ex- 
plaining the increase in random frequency error with 
increasing zero-filling is with reference to the analogous 
case of two-point fitting of a linear function. Consider 
Fig. 9, which graphically describes the problem. Consider 
the case where a linear function, whose x-intercept is 
required, is to be fitted to two data points. Furthermore, 
assume that  the x-axis error is negligible but the y-po- 
sition has a random uncertainty. This would correspond 
to experimental Fourier spectroscopy where the fre- 
quency scale is well defined but the discrete amplitudes 
in the spectrum always have some random error. Con- 
sider, first, data set A (XA1, YA1; XA2, YA2), which has a 
random ordinate error Ay, for each data point. Either 
solid line in Fig. 9 fits data set A, and the x-axis intercepts 
of the two lines give rise to an uncertainty, AxA, in the 
x-axis intercept. Consider, next, data set B (xm, Ym; XB2, 
YB2), where the abscissa spacing between the points of 
set B is less than the abscissa spacing for set A. The 
ordinate uncertainty, Ay, is the same for both data sets. 
Either dashed line in Fig. 9 fits data set B, and the x-axis 
intercepts of the two dashed lines give rise to an uncer- 
tainty, AXs, in the x-axis intercept. Note that  the un- 
certainty of the x-axis intercepts for the dashed lines is 
greater than for data set A. The errors in the x-inter- 
cepts, AXA and AXB, are "two-point" errors, analogous 

YA2-- 

A I ~I YB2 - -  .~ 
YBI -- 
YAI- 

f . . . .  L:../ f i ~ l i 
I ~B.......' I XA, XB, XB2 XA2 
~" ............ AXA ............ .4 X 

FIG. 9. Dependence of the random error in the calculated x-axis in- 
tercept, upon the x-axis spacing and the random uncertainty in the 
abscissa, Ay for two-point fitting of a linear function. The random 
ordinate error, Ay, is the same for both the A and the B data sets. The 
x-axis error is negligible for both data sets. Note that the uncertainty 
in the x-axis intercept, Ax, is much greater for data set B. 

to the "three-point" errors in the calculated frequency, 
0)interp. 

As mentioned above, the random errors are inherently 
inversely proportional to the SNR of the discrete spectral 
points. We have graphically presented the random errors 
for SNR = 100 in Figs. 3, 5, and 8, but the errors for any 
other SNR can be easily inferred from these figures. 

Total Error for Parabolic Interpolation and KCe Inter- 
polation. As mentioned earlier, parabolic interpolation is 
the best (i.e., it has the lowest systematic error) previ- 
ously examined interpolation procedure for apodized 
magnitude line shapes? The random errors for parabolic 
interpolation are given here (Figs. 3, 5, and 8) for the 
first time. Adding the systematic parabolic interpolation 
errors from the literature, 4 which are displayed in Figs. 
2, 4, and 6, to the corresponding random errors in Figs. 
3, 5, and 8, gives the total frequency error. Considering 
the dependence of the total frequency error of parabolic 
interpolation as a function of zero-filling leads to the 
following method for minimizing this total error: In all 
cases examined here, the minimum error results from 
parabolic interpolation of the once-zero-filled spectrum. 
These minimum total errors are, of course, greater than 
those of KCe interpolation. 

Since a single zero-filling requires twice as much com- 
puter memory, a further advantage of KCe interpolation, 
compared with parabolic interpolation, over and above 
its greater accuracy, is that  half as much computer mem- 
ory is required. The fast Fourier transform times will 
also be less. Obviating the need for zero-filling is a major 
advantage of KCe interpolation. 

KCe Interpolation and Exact Interpolation. Recently, 
we have developed an interpolation method which ex- 
actly interpolates from the discrete intensities of an 
apodized Fourier spectrum to give the true continuous 
frequency, Wo, the relaxation time, r, and the scaling fac- 
tor K (Eq. 1). 7 The methodology involves the simulta- 
neous iterative solution of some fairly complex tran- 
scendental equationsY ,s The iterative solution 15 of these 
equations requires as input an initial guess for O~o, r, and 
K. We found that  parabolic interpolation gave an initial 
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FIG. 10. Plot of optimal KCe exponent vs. dynamic range of the win- 
dow. The horizontal bars indicate the span in dynamic range n over 
which the particular window is suitable. For each window, the solid 
circles are located at half of the maximum of the span in dynamic 
range. The KCe values for the Hanning, Hamming, and Blackman- 
Harris windows are taken from Table I. The KCe exponent value of e 
= 12.5 for the Kaiser-Bessel window is estimated from this figure. 

guess for 0% that  lead to fairly rapid iteration to the exact 
value for ¢Oo .7 Subsequently, s we have used K C e  inter- 
polation to calculate the initial guess for o~0 and we find 
that  it gives more rapid convergence to the true value 
for 0% than does parabolic interpolation. In addition, the 
input guess for w0 from K C e  interpolation makes the 
iterative solution less sensitive to the initial guesses of 
the other input variables. 

Estimated K C e  Function for the Kaiser-Bessel Line 
Shape. One of the windows which we have found suitable 
for wide-dynamic-range spectra is the Kaiser-Bessel win- 
dow. We have recommended 11 this window for spectra 
whose dynamic range spans 1000:1 to 10,000:1. The an- 
alytical form of this window prevents easy derivation of 
its magnitude spectrum and the associated rigorous de- 
termination of its optimal K C e  exponent. Nevertheless, 
we can estimate an optimal K C e  exponent by extrapo- 
lation from the other optimal K C e  exponents mentioned 
above. Figure 10 shows a plot of the dynamic range vs. 
K C e  exponent for various windows. The span in dynamic 
range for each of the windows is indicated by a "spanning 
line" and is 10:1 to 30:1 for the Hamming window, 20:1 
to 100:1 for the Hamming window, 100:1 to 1000:1 for 
the Blackman-Harris window, and 1000:1 to 10,000:1 for 
the Kaiser-Bessel window. The solid circles are located 
at half the maximum dynamic range for each of the first 
three windows: 15:1 for the Hanning window, 50:1 for 
the Hamming window, and 500:1 for the Blackman-Har- 
ris window. If we wish to locate the corresponding mid- 
point (5000:1) of the Kaiser-Bessel window by extrapo- 
lation of the midpoints of the other windows, then the 
Kaiser-Bessel "spanning line" has to be located at e = 
12.5. In this manner we estimate the optimal K C e  ex- 
ponent for interpolation of the Kaiser-Bessel line shape 
to be e = 12.5. 

The physical basis for the legitimacy of the extrapo- 
lation in Fig. 10 is the change in line shape as one pro- 
gresses to line shapes of greater dynamic range and the 
corresponding change in the shape of the K C e  function 
as e increases. Line shapes of greater dynamic range have 
"flatter tops," "broader middles," and "steeper sides" 
than line shapes of lesser dynamic range (see figs. 1 and 

TABLE III. Recommended windows and KCe functions. 
Dynamic range KCe 

of spectrum Recommended window a exponent, e 

5-30 Hanning 5.5 b 
30-100 Hamming 6.6 b 

100-1000 Blackman-Harris 9.5 b 
1000-10,000 Kaiser-Bessel 12.5 c 

a From Ref. 11. 
b From Table I. 
• " From Fig. 10. 

2 of Ref. 13). These changes are mimicked by the K C e  
function as the exponent e increases. 

As noted above, the random errors for K C e  interpo- 
lation depend upon the number of zero-fillings but are 
esentially independent of the apodizing window and of 
the particular K C e  function. This is particularly true for 
K C e  interpolation of the non-zero-filled spectrum where 
the random frequency error for SNR = 100 is about 1.5% 
in all cases (Figs. 3, 5, and 8). Accordingly, we estimate 
that  the random errors for KC12.5 interpolation of the 
Kaiser-Bessel line shape are about the same as those in 
Figs. 3, 5, and 8. 

Experimental Application of K C e  Interpolation. The 
interpolated frequencies, derived in the prior sections, 
were derived with a knowledge of the analytical form of 
the magnitude line shapes. In experimental practice, 
however, wi,te,p has to be calculated from the experimen- 
tal variables of the experiment. In experimental practice 
then, K C e  interpolation of the discrete magnitude in- 
tensities is given by Eq. 47, rather than Eq. 20: 

(~interp 

27rrnS 7rS 

2"N 2nN 

V 1 [C(m + 1)] 1/~ - [C(m - 1)] 1/e 

(47) 

Equation 47 gives ~0i,terp, the interpolated peak fre- 
quency, as a function of S, the sampling rate; N, the 
number of data points in the non-zero-filled time signal; 
n, the number of zero-fillings; m, the index value of the 
discrete local maximum; C(m), the local maximum; and 
C(m - 1) and C(m + 1), the discrete intensities on either 
side of C(m). 

Examination of Table I shows that, while a particular 
value for the K C e  exponent is optimal, the error trend 
in the neighborhood of the optimal K C e  exponent is 
broad minimum. For example, for the Blackman-Harris 
line shape, KC9.5, the optimal K C e  function, gives a 
residual systematic error of 0.041% of a channel spacing. 
On the other hand, KC8.0 gives an error only three times 
greater (0.137%), which is still much less than the ran- 
dom error for SNR = 100 and about the magnitude of 
the random error for SNR = 1000 (Fig. 6). For the Han- 
ning-apodized line shape, KC4.0 (0.754% error) is close 
in efficacy to the optimal KC5.5 (0.342 % error) function. 
For the Hamming-apodized line shape, KC8.0 (0.532 % 
error) is close to the optimal KC6.6 (0.306 % error) func- 
tion. Use of close-to-optimal values of e may, in exper- 
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imental practice, be desirable for the following reason: 
Calculation of roots with a digital computer involves three 
steps--calculation of the logarithm by power series ex- 
pansion, division of the log by the root, and exponentia- 
tion by power series expansion. The middle step, division 
by the root, is much faster for roots which are powers of 
two. These divisions can be accomplished by machine 
language shift operations rather than by calls to the 
arithmetic logic unit (ALU). Division calls to the ALU 
are among the slowest operations for digital computers. 
Avoiding these calls by using shift operations with power- 
of-two roots may justify use of these roots. Similarly, 
using a single, special power series for a specific root may 
be worth considering if this power series converges rap- 
idly. 

R E C O M M E N D A T I O N S  

Combining our prior work on selection ~1 of optimal 
apodizing windows with the present work on optimal 
interpolation functions allows recommendations to be 
made for many experimental situations. The dynamic 
range of the spectrum determines the optimal window, 
and the optimal K C e  function then follows from Table 
I and Fig. 10. These recommendations are summarized 
in Table III. In all cases, these recommended apodiza- 
tion/interpolation schemes should be applied to the n o n -  
zero-filled spectrum, as use of the non-zero-filled mag- 
nitude intensities will give the lowest overall frequency 

error. For situations in which parabolic interpolation is 
used, the minimum total error, which will be larger than 
that from K C e  interpolation, follows from interpolation 
of the once-zero-filled spectrum. 
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APPENDIX 

This work was concerned with interpolation from the discrete Fourier spectrum to give, via Eq. 20, the interpolated 
frequency, 0~i,terp, of the continuous spectrum. This process does not require that the coeffcients a, b, and c in the 
interpolating function, Eq. 9, be known. These coefficients are  needed, though, for p l o t t i n g  the interpolating function, 
as is done in Figs. 1 and 7. The expressions for the coefficients a, b, and c, in terms of the intensities, C(w~), and 
the frequencies, o~m, are given by Eqs. A1-A3. 

C(O~m) lie -- C(~m+l)  lie -- b(w~ - ¢om+1) 
a = (A1) 

(~2 - ~ + 1 )  

I 1/e 2 ] 
C(OSm_l) lie -- C(O~rn) lie [C((Or~)l/e -- C((,j0m+l) ](0)rn--1 - -  (,0 2 )  - " ~ . ~ - - - - T - - -  

b = (A2) 

~Om--1 - -  0$rn - -  - - 2 " - ~  . - - ~ - 2 -  
(L0m 0$rn+ 1) 

C = C(~Orn_l) lie -- aw2-~  - bcom-t (A3) 
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