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Abstract

This work describes the implementation of the particle-in-cell simulation method with Monte-Carlo Langevin and
hard sphere ion-neutral collisions in our two dimensional Cartesian and cylindrical coordinate system codes. The
particle-in-cell method efficiently and accurately solves complex dynamics involving many interacting particles. In our
case ‘many’ means simulation runs with thousands to tens of thousands of Coulombically interacting particles on a
workstation. In addition, the image charge induced on the device electrodes, which is required for self-consistency in
order to make the electrodes equipotentials, is incorporated with this method. For an azimuthally symmetric
confinement geometry and charge distribution, results using the two dimensional cylindrical (rz) particle simulator
are identical to full three-dimensional simulations, by symmetry. These codes are applied to a number of examples
which are relevant to trapped ion mass spectrometry in order to demonstrate their utility. Computer experiments are
carried out to study the maximum number of ions which can be confined and equilibrium cloud shapes in cylindrical
ICR traps, ion cloud collisional cooling in a combined trap, merger of two off-axis charge columns, Kelvin-Helmholtz
instability in ring-shaped initial distributions, vortex crystallization, and image charge detection of coherent cyclotron
motion. © 1997 Elsevier Science B.V.

Keywords: Non-neutral plasma; Fourier transform mass spectrometry; Ion trap; Plasma simulation

1. Introduction sociated with high space charge conditions in
trapped ion mass spectrometry, they also can be

Realistic many particle simulations not only used to guide the design of optimal instrumenta-
provide insights into the various complexities as- tion and experimental sequences. It is usually

much easier and less expensive to modify the
computer code than the experimental apparatus.
* Corresponding author. E-mail: rd — smith@pnl.gov In addition, while most experiments rely on just

0168-1176 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0168-1176(97)00170-5



At e S

272 D.W. Mitchell, R.D. Smith / International Journal of Mass Spectrometry and lon Processes 165 / 166 (1997) 271-297

one or at most a few diagnostic tools, such as
image charge detection in Fourier transform mass
spectrometry or resonance €jection in quadrupole
ion traps, which allows the experimenter to
observe limited information on the ion ensemble,
a realistic computer experiment visualizes directly
all major aspects of ion cloud evolution.
Extensive simulation work has been carried out
to investigate ion dynamics in quadrupole and
ICR ion traps [1-12]. In nearly all previous simu-
lation work applied to mass analyzers the trajec-
tory of a single ion or a relatively small number of
interacting particles is followed through time in
the presence of externally applied electric and
magnetic fields. The most widely employed simu-
lation method for mass analyzers and ion optical
devices is a few ion approach where the ion-ion
interactions, if included at all, are derived by
directly summing the N? Coulomb forces, where
N is the number of interacting particles. Calculat-
ing Coulombic effects by summing directly the
particle—particle interactions is generally imprac-
ticable for large numbers of particles due to the
N? scaling of the Coulomb force calculation. Sev-
cral different efficient computational algorithms
arc available for the efficient solution of the
N-body problem, the two most important of which
are tree codes [13] and the particle-in-cell (alter-
natively called particle-mesh) method [14-19].
Both of these methods yield an efficient, though
approximate, solution of the actual N-body prob-
lem. A comparison of different N-body methods
to ion trajectory calculations is beyond the scope
of the present paper. The particle-in-cell method
has been chosen for this study since this approach
is a widely employed and standard method in
computational plasma physics. In particular the
method is well tested and proven reliable in mak-
ing quantitative predictions for plasma properties.
One expects that the particle-in-cell method is
capable of yielding quantitatively accurate results
for mass spectrometry simulations based on its
previous successes in modeling complex plasma
behavior. The particle-in-cell simulation method
(PIC) efficiently solves the Coulombic many body
problem by replacing the direct particle—particle
summation with the introduction of a spatial grid

to calculate the potential, including space charge,
and the introduction of finite-sized particles.

PIC originally was developed for fluid dynamics
simulations [14]; however, its greatest application
is in plasma physics where the collective behavior
in a system with density of typically 10'* cm™* for
laboratory plasmas needs to be simulated. There
are excellent books and reviews written on parti-
cle-in-cell simulations applied to various plasma
physics problems [15-19]. PIC simulations are
also employed in gravitational systems such as
galactic simulations [19,20]. Of more direct rela-
tionship to this work, PIC has been applied to a
variety of non-neutral plasma physics problems. A
two-dimensional slab equivalent to a Penning-
Malmberg trap has previously been employed to
investigate equilibrium properties, cross-field
transport by ncutral collisions, solitons arising
from initial disturbances and ion crystallization
[21]. The particle-in-cell method has recently been
used to study the normal modes of a cold charged
cloud in a Penning trap, including temperature
dependencies [22]. Early on, Hockney successfully
simulated the formation of virtual electrodes
which develop when several electron guns, posi-
tioned symmetrically opposed at the edge of a
conducting cylindrical tube, are directed towards
the tube’s center [23].

This work describes the implementation of the
PIC algorithm in our two-dimensional cylindrical
and Cartesian codes. These codes are tested and
their utility demonstrated by a number of exam-
ples which are relevant to trapped ion mass spec-
trometry at high space charge conditions. The
extension to three dimensions is straightforward,
though more computationally intensive, and will
be described elsewhere. The real world is three
dimensional; therefore, we must be careful in
applying two dimensional numerical results to
actual three dimensional devices. Nonetheless,
there are several reasons why two dimensional
simulations are relevant and interesting in the
regime where space charge effects are important.
The inclusion of realistic space charge effects in
two and three dimensional geometries generally
makes an exact analytical solution impossible.
Therefore, one relies on an approximate analyti-
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cal treatment which should be tested by experi-
mental results whenever such experiments are
available. On the other hand, an accurate com-
puter simulation is a viable alternative to actual
laboratory-based experiments if the important dy-
namical effects are properly treated. Therefore,
one important role of computer experiments is to
test correctness of the approximate analytical
models. Symmetry simplifies many kinds of prob-
lems. For example, if the confinement geometry
and the charge distribution are axially symmetric
then two-dimensional simulations using a cylin-
drical rz coordinate system are identical to full
three dimensional simulations. Some of our two-
dimensional simulations deal with this cylindrical
geometry and are, therefore, identical to what
one would obtain using a full three-dimensional
PIC code with much less computational effort. In
addition there are important two-dimensional
problems that have not yet been solved. It is well
known, and recently exploited by plasma physi-
cists, that the equations of motion governing the
two-dimensional E X B drift dynamics of charge
columns are isomorphic to the Euler equations
for a two-dimensional incompressible inviscid fluid
[24]. An intense area of current research is
directed at trying to understand two dimensional
turbulence in the Euler equations and to exploit
the fluid analogy by making precise fluid mea-
surements through non-neutral plasma experi-
ments [24-27].

This paper is organized as follows: firstly, the
computational algorithm implemented in our two
dimensional Cartesian and cylindrical coordinate
system particle-in-cell simulator, is described. In
the Sec. 3 these codes are applied to different
physical situations of interest to trapped ion mass
spectrometry and /or non-neutral plasma physics
experiments. The cylindrical 7z code is applied to
a cylindrically symmetric confinement geometry
containing a cylindrically symmetric charge dis-
tribution. Therefore, while the rz code is two-
dimensional, the results obtained below using this
code should be identical to a full three-dimen-
sional simulation, by symmetry. Problems studied
using the cylindrical PIC code include determina-
tion of the maximum charge which can be con-
tained in a cylindrical Penning trap and collisio-

nal cooling of an ion cloud in a combined trap.
This is followed by applying the Cartesian xy
code to a number of interesting physical situa-
tions. A pure electron plasma confined by a Pen-
ning-Malmberg trap, whose length is much greater
than its radius, exhibits nearly two dimensional
dynamics perpendicular to the applied magnetic
field [24]. In addition, at high ion density, the
electric field along the z-axis is nearly cancelled
by the space charge electric field even in a small
aspect ratio Penning trap, resulting in essentially
two-dimensional (xy) ion trajectories for those
situations. We apply the Cartesian xy particle-in-
cell simulator to charged columns in a number of
initial configurations leading to interesting dy-
namics. Vortex merger and the Kelvin-Helmholtz
instability are demonstrated with two off-axis
charge columns and ring ion clouds, respectively.
Comparison is made between computer simula-
tion with available experimental data and analyti-
cal models. Other simulations include image
charge detection of coherent cyclotron motion
and the first computer simulation of the recently
discovered phenomenon of vortex crystallization
[27].

2. Computational procedure

PIC is capable of following the dynamics of
tens of thousands of interacting particles on
workstations (> 10° on a supercomputer [16]) with
self-consistent fields. Most simulation work on
ion dynamics in ICR Penning traps, rf Paul traps
or combined traps either neglect space charge
effects completely or include the ion-ion interac-
tions by directly summing the Coulomb interac-
tions between a few particles. The major problem
with this approach is that computational effort
scales as order N2. Even high performance vector
and parallel computers are limited to a maximum
of ~ 1000 particles for several thousand time
steps if this approach is taken [7,12]. PIC is an
O(N) method, which lets one treat thousands of
interacting particles with relatively modest com-
puting resources. With the PIC method the space
charge electric field is calculated at the ion posi-
tions, not by summing the N? Coulomb forces,
but rather from a computational grid on which
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force is zero for completely overlapping clouds
(11,33]. Treating superparticles as finite size ion
clouds is intuitively reasonable since there is a
maximum density achievable for the jon clouds
[34]. The particle-in-cell method implicitly incor-
porates finite size particles in the algorithm
[16,32]).

After various inputs are chosen (including the
device geometry, applied potentials and fields,
number of simulation particles, their masses,
charges, initial positions and initial velocities) the
simulation follows the PIC algorithm outlined in
Fig. 1. The interior of the trap is divided into a
computational mesh. Field quantities are evalu-
ated on the grid points of this computational
mesh. In the most general PIC algorithms the full
Maxwell equations are solved including self-mag-
netic fields and relativity; however, in our imple-
mentation we use the electrostatic approximation
which neglects relativistic effects and self-mag-
netic fields [15]. Fully electromagnetic PIC simu-
lators find their greatest application when radia-
tion is of interest, such as in the study of laser-
plasma interactions; or at very high temperatures
and density, such as in fusion plasmas. In nearly
all problems of interest to mass spectrometrists
the electrostatic approximation is excellent.

At each time step in the PIC simulation the
fields are derived and the particles advanced
according to the following procedure: charge den-
sity is assigned to the grid points of the computa-
tional mesh using bilinear interpolation from the

weighting:
F—Pij

Poisson solver:

V—v’ V2¢ =- p/eo
(&)

MC collisions:

particle push: weighting:
F=qvxB+qE 6,;—E;; — E(r)
= mdv/dt
dridt=v

Fig. 1. Graphical representation of the particle-in-cell simula-
tion algorithm.

particle positions to the four nearest grid points
to each particle. The potential is solved exactly at
the grid points by direct solution of Poisson’s
equation. The electric field is calculated at each
particle position by interpolation from the electric
field of the nearest four grid points. The same
weighting scheme is used as for the charge den-
sity. The particle positions and velocities are ad-
vanced in time for one time step by the explicit
second-order leap frog method [15,19]. In cases
where a collision gas is included, ion-neutral elas-
tic collisions are incorporated by the Monte-Carlo
method. Any particles which are found to have hit
an electrode are removed from the simulation.
The process is repeated for the next time step.
During the course of a simulation run, selected
frames are recorded for a movie and various
histories are recorded, such as total energy, elec-
trostatic energy, canonical angular momentum
about the magnetic field, and image charge in-
duced on a particular electrode. Below, the sepa-
rate steps in the PIC algorithm, as implemented
in our codes, are described in detail, The codes
are written in FORTRAN and C and currently
run on a variety of Unix workstations and PCs,
Work is in progress towards developing a graphi-
cal user interface with cross-platform capability
and the development of a suite of general pur-
pose two- and three-dimensional electrostatic
particle-in-cell simulation codes.

2.1. Area weighting: interpolate particle positions to
charge density at the grid points

The first part of the PIC algorithm is to set up
the charge density matrix p which is required for
the Poisson solver. Since Poisson’s equation is
solved on a computational mesh, the charge den-
sity needs to be known at the grid points; how-
ever, the particles are free to be anywhere in
space. Therefore, one must interpolate charge
density from the ion positions to the computatio-
nal grid. Our codes implement the widely used
bilinear weighting, also known as particle-in-cell
or area weighting [15-17]. Fig. 2 demonstrates
area weighting for a 2D Cartesian grid. The parti-
cle is located inside of a computational mesh cell

il
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at position x,y and only the four nearest grid
points, labeled 1 to 4, are shown. The dimension-
less weights w, to w, are the areas of the indi-
cated regions divided by the area of one mesh
cell, so that the sum of the weights equals one,
ie. w; +w, + w; +w, = 1. The charge density as-
sociated with any given particle is distributed to
its four nearest grid points according to these
weights. For example, if the mesh cell has width A
and the charge per unit length for one particle is
Q/L, then the charge density assigned to grid
point k (k=1,23,4) in Fig. 2 due to the particle
located at coordinate x,y is given by w,Q/h*L.
Repeating this procedure for all of the particles,
results in the total charge density matrix p;;,
where i and j are indices for the 2D Cartesian xy
computational grid. For the cylindrical coordinate
(rz) PIC code, the same area weighting scheme is
employed to weight each simulation particle to its
four neighboring grid points. However, the den-
sity calculation is modified in order to take into
account that the volume for one mesh cell is

2 3

* :
Wy WlT
.................... L
W3 . Wy
L |

1 4

Fig. 2. The area weighting scheme for a Cartesian grid used
for interpolating between particle positions and grid quantities
(p and E). Only the four nearest grid points to a simulation
particle located at position x,y are indicated. The charge
density at grid points labeled 1 through 4 is interpolated from
the particle located at x,y by assigning the weights w, through
w, to the respective grid points. The dimensionless weights
are the areas of the indicated regions divided by k2, the area
of one mesh cell. The area weighting scheme is used for both
interpolating charge at particle positions to charge density at
grid points and interpolating electric field at grid points to the
particle positions.

r-dependent according to wh’/4, for j =1 corre-
sponding to r=0, and 7wh*Q2j-2), for j>1,
where j is the grid indice in the radial cylindrical
direction, instead of A*L used in the Cartesian xy
code.

Since charge is distributed to neighboring grid
points, the area weighting scheme has the effect
of introducing finite size particles, rather than
point particles, into the simulation. The physics of
finite-sized particles is well developed [15-17].
The 2D xyPIC code (no variation of the fields in
the z direction) essentially replaces each line
charge particle with an approximately uniform
charge density rod whose cross-sectional area is
h%. In the 2D cylindrical rzPIC code (no azi-
muthal variation), the simulation particles are
approximately uniformly charged rings of cross-
sectional area k2. The singularity associated with
the Coulomb interaction between point particles
is removed implicitly in PIC simulations.

2.2. Poisson solver: determination of the potential
from the density matrix

The electrostatic potential & (space charge +
image charge + trap potential) is derived by the
numerical solution of Poisson’s equation V>® =
—p/&, on the computational grid, where &,=
8.85x 10712 F m™! is the vacuum permittivity
and p is the charge density. The method is self-
consistent since Poisson’s equation is solved at
each time step in the simulation. The PIC method
is efficient owing to the availability of very fast
methods for solving the finite difference form of
Poisson’s equation [18,35]. In our PIC codes we
employ the direct, non-iterative Poisson solvers of
Schwartzrauber and Sweet which rapidly solve
Poisson’s equation to full machine precision using
cyclic reduction [36,37]. These Poisson solvers are
sufficiently general to handle any combination of
Dirichlet (potentials specified on the boundary),
Neumann (electric field specified at the boundary)
or periodic boundary conditions. The direct Pois-
son solvers yield an exact solution of the finite
difference Poisson equation, accurate to full ma-
chine precision.

As examples of the efficiency of the Poisson
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solvers implemented in our codes, CPU times are
given for an IBM-RISC 6000 workstation. The
direct solution of Poisson’s equation on 2D (xy)
Cartesian 64 X 64 and 128 X 128 computational
meshes required 0.016 s and 0.072 s CPU time,
respectively. The direct solution of Poisson’s
equation on cylindrical (rz) 64 X 128 and 100 X
200 computational meshes required 0.038 s and
0.118 s CPU, respectively, on a RISC 6000.

In comparison to the more familiar successive
overrelaxation method, the direct Poisson solvers
employed here are approximately three orders of
magnitude faster. A timing comparison was made
between the direct Cartesian Poisson solver and
successive overrelaxation for Cartesian 64 X 64
and 128 X 128 computational grids. The direct
Poisson solver was 400 and 1000 times faster than
the overrelaxation method for the 64 X 64 and
128 X 128 grids, respectively, using a convergence
criteria of 107> error for the overrelaxation
method. On the other hand, the direct Poisson
solver yielded the finite difference solution accu-
rate to machine precision. If higher accuracy (in
the overrelaxation method) or larger grid sizes
are required, the successive overrelaxation
method is even more inefficient compared to di-
rect Poisson solvers. Direct Poisson solvers have a
computational efficiency that scales as
O(N,LogN,), where N, is the number of grid
points in the computational mesh [18]. This is
much more efficient than successive overrelax-
ation whose computational effort scales as O(Ngz)
[18].

Without modification the direct Poisson solvers
are only applicable to the special electrode
geometries where the coordinate system coincides
with the electrode boundary, i.e. are only applica-
ble for a cylindrical trap if a cylindrical coordi-
nate system Poisson solver is employed or a box
trap if a Cartesian system direct solver is em-
ployed. However, it is possible to accommodate
any arrangement of interior electrodes with the
direct solvers by use of the capacitance matrix
method [18,23]. We have included the capacitance
matrix method in our codes in order to have the
potential correct everywhere, including image
forces arising from complicated electrode ar-
rangements. In the capacitance matrix method

Poisson’s equation is first solved without any inte-
rior electrodes. All of the error potentials (dif-
ferences between desired potentials at the inte-
rior electrode points and the actual potentials)
are recorded then multiplied by a pre-calculated
capacitance matrix which gives charge at each
interior electrode required to give the correct
electrode potential. Poisson’s equation is solved a
second time with the charge at the interior elec-
trode points. The resulting potential is correct
everywhere including the interior electrodes.
Therefore, at the expense of having to solve Pois-
son’s equation twice per time step the direct
Poisson solvers are applicable to any arrangement
of interior electrodes.

2.3. Area weighting: interpolate potential at grid
points to electric field at ion positions

The electric field at the grid points is evaluated
numerically by differentiating the potential at the
grid points using central differences. For example,
if  is the indice of the grid in the x direction,
then the x component of the electric field at grid
point i,j is given by E, = —(®;, ;- ®;_y;)/2h
which is valid to second order in A, the distance
between nearest neighbor grid points. The elec-
tric field at electrode boundaries is calculated by
first-order differences. The electric fields at all
particle positions are calculated by interpolating
from the electric field at the grid points using the
same area weighting scheme as described above
for the calculation of the charge density matrix.

2.4. Particle push: moving the particles forward in
time for one time step

The particles are pushed forward in time for a
single step At by solving the Newton equation
with Lorentz force. For a single particle of mass
m, charge g, position r, velocity v, in a magnetic
field B and electric field E,

dv
mzt—=quXB+qE

dr
-d—t =D (1)

These equations are numerically integrated at a
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constant time step by using the second-order ex-
plicit leap-frog scheme, a widely employed and
surprisingly accurate integration procedure
[15,19,38]. While the PIC codes described here
are two-dimensional, all three velocity compo-
nents are evaluated in order to treat elastic ion-
neutral collisions which involves all three velocity
components. The leap-frog method originally was
derived heuristically based on the desirability of
obtaining very fast numerical algorithms which
are time reversible and time centered [38]. Algo-
rithms possessing these qualities are generally
stable for a sufficiently small time step and do a
good job conserving certain properties, such as
total energy and canonical angular momentum
about the magnetic field in ICR traps. The leap-
frog equations of motion are [15-19]

t+Ar/2 _ 4, t—At/2 I+AI/2+UI—AI/2

1] v _ 1]
m At =9 2

t+ A r:

r
t t
XB' +qE AL

___v:+A1/2 (2)

where the superscripts denote the time at which
the respective position r, velocity v, electric and
magnetic fields are evaluated. Notice that r and v
are staggered in time by At/2. Given particle
positions at time ¢ and velocities at time ¢ — At/2,
the leap-frog returns positions and velocities at
times ¢+ At and t+ At/2, respectively. The
leap-frog scheme is stable provided that the
product of the fastest angular frequency « pre-
sent in the physical system and the time step At
is less than two (i.e. numerical stability requires
wAt <2) [19]. In most of our simulations, the
fastest angular frequency is the cyclotron fre-
quency.

The leap-frog scheme is used for all times;
however, the leap-frog method is not self-starting
since the algorithm requires r (¢t = At/2), in addi-
tion to v (¢t =0). Given particle initial conditions
r’ and v° the leap-frog method is made self-start-
ing in our codes by integrating r in time for the
first one-half time step using the elementary algo-
rithm [1]

0 2
rA'/2=r°+”—2Al+f’8;‘,;—(uxB+E)° 3)

After using this elementary algorithm for the first
one-half time step, the leap-frog is self-starting
since the positions are now known At/2 ahead of
the velocities. To summarize, Eq. (3) is used just
once in order to obtain the starting values v° and
r2'/2, The leap-frog integrator, Eq. (2), is then
used for all subsequent times, ¢ = At, 2At, 3A¢, ...

2.5. Monte-Carlo ion neutral collisions

Elastic collisions between the ions and a neu-
tral bath gas are included by the Monte-Carlo
method. The implementation of MC collisions in
our codes is similar to that described by Londry
et al,, except that we include hard sphere colli-
sions, as well as Langevin collisions [1]. Both
Langevin and hard sphere collisions are included
since the former and latter are most important at
low and high relative velocities, respectively. The
MC algorithm assumes that each simulation par-
ticle (which represents many individual ions), as
far as ion neutral collisions are concerned, be-
haves as a single ion. The algorithm begins by
determining whether a particle has a collision
with a neutral atom of the bath gas. For each
particle, a neutral atom velocity vector is chosen
randomly from the Maxwell-Boltzmann distribu-
tion. For a collision cross-section ¢ (which is the
sum of the hard sphere and Langevin cross-sec-
tions), neutral gas density n,, and relative velocity
between particle and neutral atom uv,, the
probability that a collision occurs is given by [16]

P,=1-exp(—n,ov,At) @

which is accurate if At is small enough that
P. < 1. A random number R, uniform between 0
and 1, is chosen. If P, >R, then a collision oc-
curs, in which case the particle’s velocity vector in
the center of mass frame is given a random direc-
tion, then transformed back to the laboratory
frame as described by Londry et al. [1]. The
particle position r remains unchanged immedi-
ately after the collision. Only the velocity v is
affected as a result of the elastic collision. In
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order to speed up the MC calculation, the neutral
atom velocity vector is not created from scratch
every time the MC algorithm is called, requiring
three calls to a random number generator and
other coding. Instead, at the beginning of the
simulation an array of 10000 random neutral
velocity vectors is stored from the Maxwell-Boltz-
mann distribution. During the simulation, the
neutral velocities are chosen randomly from this
pre-calculated set.

While the MC algorithm is currently restricted
to elastic ion-neutral collisions in our codes, the
MC method is easily generalized to any known
collision process (e.g. inelastic collisions, charge
exchange, ionization) given empirical or theoreti-
cal cross-sections [16]. With the combination of
PIC and MC collisions one can conceivably simu-
late entire experimental sequences perhaps in-
volving simultaneously ions, electron beam, ion-
neutral scattering, ionization, charge exchange
and various chemical reactions.

3. Results and discussion

Below, the two dimensional PIC codes are ap-
plied to a number of problems which are relevant
to trapped ions. First, 7zPIC is employed to study
an axisymmetric ion cloud confined in a cylindri-
cal trap with a constant magnetic field directed
along the trap’s z-axis. The rzPIC simulation
results are identical to what one would obtain
from full three-dimensional simulations for the
physical systems considered below; namely, cylin-
drically symmetric confinement geometry and
charge distribution. Next, the Cartesian xyPIC
code is applied to the dynamics of off-axis ion
clouds moving in the xy plane under E X B drift,
the merger of two off-axis ion clouds, Kelvin-
Helmbholtz instability in hollow charge distribu-
tions, and image charge detection of coherent
cyclotron motion. In all situations where ap-
propriate experimental data or analytical models
are available, we demonstrate that the simula-
tions yield predictions which agree quantitatively
with experiment and analytical theory.

3.1. Simulation results employing rzPIC

The cylindrical particle-in-cell simulator
(rzPIC) assumes that the device and charge dis-

tribution have cylindrical symmetry. In this case
the simulation results from rzPIC are identical to
full three dimensional simulations by symmetry.
Therefore, rzPIC may reliably be applied to such
problems as charged beams in cylindrical ion op-
tical devices; ellipsoidal ion clouds aligned along
the trap symmetry axis of an rf Paul, Penning or
cylindrical trap; on-axis ion injection into one of
these cylindrically symmetric traps; or an axially
symmetric ion source. Below, rzPIC is used to
study the maximum number of ions which can be
confined in a cylindrical ICR trap, including ex-
perimental parameter dependencies, and the
cooling of an ion cloud in a combined trap by
ion-neutral collisions.

3.1.1. Maximum ion population and equilibrium
cloud shape

The first application presented is to determine
the maximum number of ions which can be con-
fined in an ICR trap. A cylindrical ICR trap (5 cm
diameter and 5 cm length) is allowed to fill to
capacity with ions by introducing particles over
many time steps at a constant current at random
positions within a 1-mm radius cylindrical volume
which extends the entire trap length. Neglecting
space charge effects, there is no limit to the
number of particles which can be confined. How-
ever, the space charge potential limits the maxi-
mum total charge and number density which can
be confined. These are actually two different
limits. The maximum charge which can be con-
fined is determined by the condition that the
space charge potential just equals the trapping
well depth [33,39]. This is called the z-confine-
ment limit since the well depth is calculated along
the trap’s z-axis. The second limit is determined
by the radial force balance condition that an ion
is confined only if the radially inward magnetic
force is greater than the sum of the outward
centrifugal and space charge forces [34,39,42].
This condition defines a maximum number den-
sity which can be confined known as the Brillouin
density limit (ny = £,B%/2m).

Fig. 3 shows equilibrium particle configurations
at B=1 T for three different potentials applied
to the end caps with ground on the ring electrode.
These equilibria are reached by introducing as
many particles as the trap can hold. Subsequently,
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no additional particles are introduced into the
trap and the particles are followed for another
4000 time steps. We find that the maximum num-
ber of ions which can be confined is proportional
to the trap potential in qualitative agreement with
a simple analytical model. A simple model for the
z-confinement limit, based on the assumption that
the ion cloud is a uniform density cylinder of
charge, predicts that the maximum number of
ions (charge ¢) contained in an ion cloud (cloud
radius p, and length L) is [33,39]

N,

max

dme LV, -1
- M(1 + 21n:)—‘") (5)

where r,, is the radius of the confinement geome-
try and V; is the trap potential well depth in volts.
Eq. (5) agrees surprisingly well with the maximum
number of ions confined in an actual cylindrical
trap by the PIC simulations. The dependence on
r, is due to the image charge. The trapping well
depth V; is the difference between the potential
at the end caps and the potential at the trap
center when the trap is space charge free. For a
cylindrical trap whose length and diameter are
equal with a potential difference of ¥, between
endcap and ring electrode, V; = 0.72 V,. Putting
this in Eq. (5) yields a maximum number of ions
which can be confined equal to 3.3 X 10° ¥, which
compares well with the numerical simulations
which find maximum numbers of singly charged
ions equal to 0.26 X 10°, 2.6 X 10°, and 36.0 x 10°
at trapping voltages (V}) equal to 0.1, 1.0 and 10.0
V, respectively.

While the equilibrium configuration for a full
trap with ¥,=0.1 V and V,=1.0 V is approxi-
mately cigar-shaped and 1-mm radius, it is evi-
dent that for ¥, =10 V the ion cloud radius is
considerably greater than 1 mm. The reason for
this expansion is that the Brillouin density limit
(ngp =2.66 X 10> m~?) is reached before the z-
confinement limit is reached in Fig. 3c. If an ion
cloud reaches its Brillouin limit before the z-con-
finement limit is reached, the ion cloud expands
radially such that its number density is below the
Brillouin limit. The measured number densities at
the ion cloud centers (averaged over a small
volume within the ion cloud) for a full trap from

the simulations at V,=0.10, 1.0 and 10.0 V are
0.12x 10, 1.0 x 10", and 24X 10" m™>, re-
spectively, with an uncertainty of approximately
+15%. The number density for the simulation
run with ¥, = 10.0 V is close to the Brillouin limit.
It is actually possible for the ion cloud to contact
the ring electrode before the z-confinement limit
is reached if the trap potential and magnetic field
are sufficiently high and low, respectively. One
should note from Eq. (5) that the z-confinement
limit is independent of magnetic field. Additional
simulations carried out at 2 T gave nearly identi-
cal maximum total charge which can be confined
as the 1 T simulations. However, since the Bril-
louin number density limit is proportional to
B%/m and independent of charge, higher mag-
netic fields may be required if a large population
of high molecular mass ions is to be confined in a
small volume.

It is interesting to look at the total potential
(trap + space charge + image charge) along the
z-axis as the trap fills to capacity with ions. Fig. 4
plots the electric potential along the z-axis for
five different numbers of ions, ranging from zero
(empty trap) to 2.6 X 10° singly charged ions (full
trap) modeled by 25000 simulation particles, when
the end caps are at 1 V. At ¥, =1V, m=100u
and B =1 T, the Brillouin limit is not surpassed
for a 0.1-cm radius cylindrical ion cloud, even
when the trap is completely filled with ions (ie.
the ion cloud does not radially expand apprecia-
bly beyond the initial 0.1-cm cloud radius as
observed in Fig. 3b). As the trap fills with ions,
the potential flattens in the trap center. Qualita-
tively, the space charge shields the trap electric
field along the z-axis, modifying the potential
from quadrupolar to particle-in-a-box. At high
ion populations and low trap potentials, the ions
arrange themselves in such a way that the space
charge potential negates the applied trap poten-
tial, resulting in particle-in-a-box behavior along
the z-axis. The assumption of a quadrupolar po-
tential is incorrect even for 0.15 X 10° ijons with
these conditions. As the ion population increases,
the well depth decreases until the space charge
potential completely negates the trap potential
For end cap potentials other than 1 V, these
curves are basically the same as in Fig. 4, except
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the number of ions is scaled by the trap potential.
_ For example, if V, = 0.1 V with all other parame-
Vt - 0-1 V . .

ters remaining the same, the curve corresponding
03x10%e t00.15 X 108 ions for 1 V is the same as 0.15 X 10°
ions for 0.1 V.

(a)

AR B A e 3.1.2. Combined trap with collisional cooling

A more complicated application of the code
rzPIC is to study the evolution of an ion cloud in
a combined trap (ie. a Paul trap in a constant
magnetic field) with the addition of a high neutral
background pressure [40]. The cylindrical trap has
the same dimensions as above (5 cm length and 5
(b) cm diameter). An rf-only potential (1 MHz; 5000
Vt =10V V4.p) is applied to the ring electrode with ground
2.6 x 106 e on the end caps (V,=0 V). The trap is in a 1-T

’ magnetic field with a bath gas of 50 mtorr N, in
thermal equilibrium at 300 K temperature. The
) . ion cloud, composed of m /z 1000 ions, is initially
e AR s cigar-shaped with cloud radius 0.1 cm extending
the entire trap length.

In order to discern the relative importance of
space charge effects on the cloud shape, we com-
pare two different simulation runs. In the first
case, Coulomb interactions are neglected al-
together, while in the second run, space charge

(C) effects between 4.4 X 10° singly charged m/z
Vt =10.V 1000 ions modeled as 2000 particles in the PIC
simulation are self-consistently followed in time.

36.x 106 € If Coulomb interactions are negligible, the ion

cloud cools to a small volume at the trap center
determined by the pseudopotential, the ion-neu-
tral mass ratio, and the neutral gas temperature.
From Fig. 5a the equilibrium distribution is nearly
spherical in shape and of relatively small spatial
extent when Coulomb interactions are neglected.
On the other hand, Fig. 5b demonstrates that for
4.4 X 10% e charge and the other conditions used
Z in the simulation, the ion cloud actually expands
radially. The equilibrium shape is actually an

Fig. 3. Equilibrium particle configurations in the xz plane for a cylindrical ICR trap filled to capacity with space charge. Three
different trap potentials are used corresponding to three different maximum numbers of singly charged m /z 100 ions which can be
confined: (a) ¥, = 0.1 V and 0.3 X 10° singly charged ions; (b) ¥, = 1.0 V and 2.6 X 10° ions; and (c) ¥, = 10.0 V and 36.0 X 10° ions.
A 1-T magnetic field is applied parallel to the trap z-axis. Potentials ¥, and ground are applied to the end caps and ring electrode,
respectively. The maximum charge which can be confined is approximately proportional to trap potential well depth. Particles with
m /z 100 are injected over many time steps in a cylindrical volume with radius p, = 0.1 cm and length 5 cm until the trap (radius 2.5
cm and length 5 c¢m) cannot hold additional particles. The simulation time step is 0.65 ps and the computational rz mesh is
50 X 100 cells.
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Fig. 4. The total electrostatic potential along the z-axis for
different numbers of singly charged m /z 100 ions confined in
a cylindrical trap (trap potential 1 V, radius 2.5 cm, length 5
cm). The total number of ions range from an empty trap to a
completely filled trap containing 2.6 X 10% ions. Parameters
include 25 X 10% simulation particles, 1-T magnetic field and
0.65-us time step. Particles are initially injected into the
cylindrical ICR trap within a radius of 0.1 cm from the z-axis,
then are allowed to equilibrate over many time steps.

oblate ellipsoid for these conditions with the ma-
jor axis four times longer than the minor axis.
This shape follows a contour of constant pseu-
dopotential, and represents a force balance
between the space charge potential and applied
pseudopotential. The maximum density of this
distribution is ~ 1.5 X 10" cm™> which is close to
a theoretical estimate of 1.3 X 10’ cm™3, where
the latter is based on the assumptions that the
maximum density occurs when the space charge
potential just equals the pseudopotential well
depth and that image charge effects are negligible
[41]. Collisionally cooled ions in a combined trap
with a deep pseudopotential well are focused
towards the well minimum. However, eventually
the Coulomb repulsion between ions prevents all
of the ions from reaching the center. The equilib-
rium configuration is reached when the space
charge potential equals the pseudopotential with
the cloud boundary coincident with a pseudopo-
tential contour.

3.2. Simulation results employing xyPIC

The Cartesian PIC code (xyPIC) treats the
z-variable as ignorable, meaning that there is no
z-dependence for the fields. The particles are,
therefore, infinitely long charged rods aligned
parallel to the z-axis. The xyPIC code is used to
study basic aspects of ion cloud dynamics in the
xy plane of an ICR trap. Though not done here, it
is easy to modify the xyPIC code to study ion
behavior parallel to the applied magnetic field by
directing the magnetic field along either the x or
y axis [21].

The first problem we address is the effect of
ion-neutral collisions on an initially cold uniform
density ion cloud whose symmetry axis coincides
with the trap geometric center. In these simula-
tions a 1-T magnetic field is directed parallel to
the z-axis. Furthermore, the trap radial boundary
is at ground potential. This is not a restriction in
our codes, but rather a choice of convenience
(e.g. each electrode point may take on a different
potential). An initial ensemble of 5 X 10* simula-
tion particles is distributed within a radius of 0.3
cm from the trap center by a uniform random
number generator. The particle charge per length
is chosen to model 1 X 10° singly charged ions in
a 5-cm long trap. The initial number density
within this ion cloud is 7, = 7.1 X 10° cm~>. This
density is much lower than the Brillouin maxi-
mum density limit of n; = 1.8 X 107 cm >, thereby
guaranteeing good radial confinement for this
cloud. In the simulations, the m /z 150 particles
are allowed to interact via their Coulomb interac-
tion as well as with a 1.5 mtorr He collision gas
which has a 300-K Maxwell-Boltzmann distribu-
tion. The configuration is followed in time to
determine the effect of the bath gas on the parti-
cle distribution.

Fig. 6a plots the ion speed distribution at three
different times in the simulation, corresponding
to different average numbers of ion-neutral colli-
sions per ion. The broken line in Fig. 6a is the
theoretical 300-K Maxwell-Boltzmann speed dis-
tribution without any fitted parameters. While
initially all ions start at rest in the simulation,
their speed distribution closely approaches
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0.01 ms

0.01 ms

ity

(b)
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Fig. 5. Relaxation of an initially cigar-shaped ion cloud ( g, = 0.1 cm) by thermalizing 300-K ion-neutral collisions in a cylindrical
trap (radius 2.5 cm, length 5 cm) operating in the combined trap mode. A 1-MHz rf potential with ¥, , = 5000 V is applied to the
ring electrode with zero potential on the end caps. In (a) Coulomb interactions between particles are neglected while in (b) the total
charge is 4.4 X 10° e. Other parameters include 50 mtorr N, bath gas, B=1 T, 2000 simulation particles, g =e, m /z 1000,

50 x 100 computational mesh and 0.033-us time step.

Maxwellian after each particle undergoes > 100
ion-neutral collisions. The ions clearly reach a
thermal equilibrium with the bath gas after ~ 100
collisions /ion. The good agreement between the
computer simulation result and the theoretical
distribution attests to the ability of the Monte-
Carlo method to accurately simulate ion-neutral
collisions. This observation suggests that a simple
procedure to generate a thermal equilibrium dis-
tribution of ions is simply to start the simulation
with some non-thermal distribution then intro-
duce a collision gas just long enough to achieve
thermal equilibrium.

The radial dependence of the number density
is shown in Fig. 6b for two different times in the
simulation run, corresponding to two different
average number of collisions per ion. Initially, the
particles are in'a top hat distribution where the
density is n, within the cloud then falls abruptly
to zero for radii greater than 0.3 cm, the ion

cloud radius. As the number of collisions in-
creases, the central density decreases and the
cloud expands radially. A non-zero temperature
has a Gaussian radial dependence which is identi-
cal to a Maxwell-Boltzmann distribution in the
frame of reference rotating with the cloud’s E X B
drift [42]). Most of this expansion is related to a
negative energy effect analogous to magnetron
mode expansion. The space charge electric field
within the ion cloud is directed radially outward.
This radial electric field results in an E X B rota-
tion of the ion cloud about the cloud’s symmetry
axis, which happens to coincide with the trap
z-axis in this simulation. The radial outward elec-
tric field is defocusing. Ion-neutral collisions radi-
ally expand the ion cloud. However, radial expan-
sion slows with time (remember that there are no
applied trap fields) since the space charge radial
electric field is proportional to the density, which
decreases as the cloud expands.
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Fig. 6. Thermalization of an on-axis initially cold m /z 150
ion cloud by ion-neutral collisions with 1.5 mtorr He bath gas
at 300 K temperature. The 0.3-cm radius ion cloud consists of
5% 10* simulation particles (m /z 150) whose total charge is
set to model a system of 1 X 10° singly charged m /z 150 ions.
Different average numbers of collisions per ion, correspond-
ing to different times during the simulation run, are indicated;
(a) plots the ion speed distribution showing close agreement
with the theoretical 300 K Maxwell-Boltzmann distribution
(broken line) at 153 collisions /ion, while (b) shows the radial
density profile normalized to the initial density at different
numbers of collisions per ion. The xyPIC code is used in this
and subsequent simulations. Parameters include a 128 X 128
xy computational mesh with ground on the xy electrode boun-
daries, a 1-T magnetic field directed along the z-axis and a
1.9-us time step.

3.2.1. Dynamics of an off-axis charge column with
circular cross-section

In this simulation the ion cloud (a column of
charge) is displaced from the trap symmetry axis
in effect giving the ion cloud a coherent mag-
netron mode. If one neglects Coulomb effects,
the ion cloud does not move in time since there is
no applied trap potential to produce a radial
electric field. The presence of Coulomb interac-
tions in actual systems causes the ion cloud to
rotate about its own symmetry axis due to the
internal space charge E X B drift and to rotate
the ion cloud as a whole about the trap’s own
symmetry axis due to image charge-induced E X B
drift.

Fig. 7 depicts the evolution of an off-axis ion
cloud moving under the influence of its own image
charge induced on the electrodes and internal
Coulomb electric field. The ion cloud has an
initial constant density of 7.1 X 10° cm™® and
models a 0.3-cm radius ion cloud consisting of
1 X 105 singly charged m /z 150 ions. The ion
cloud is initially positioned 1.5 cm from the cen-
ter of a 5-cm wide grounded trap whose cross-sec-
tion is either (a) square or (b) circular. Particle
positions are plotted at four different discrete
times. In addition, Fig. 7 shows the complete
trajectory (50 ms) of a single representative parti-
cle (broken line) and the ion cloud center of mass
position (solid line). The two most important dy-
namical effects observed are a relatively fast in-
ternal cloud rotation and a slow rotation of the
entire cloud around the trap z-axis.

The image charge is present since the trap
boundary is an equipotential. The interaction
between the image charge induced on the trap
boundary with the ion cloud gives rise to an
electric field directed radially outward from the
trap geometric center through the ion cloud cen-
ter of mass. The resulting image charge-induced
E X B drift is a rotation about the trap center.
The rotation frequencies are = 19 Hz and =23
Hz for the square and circular traps, respectively.
This measured image charge-induced rotation
frequency for the cylindrical trap is identical to
the result obtained from an analytical model
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(a)

Fig. 7. The dynamics of a 0.3-cm radius ion cloud displaced
L5 cm from the z-axis of (a) a trap with a square cross-section
and (b) a trap with a cylindrical cross-section. The electrode
points are at zero potential. Particle positions are plotted for
the entire cloud at four discrete times. Also indicated are the
ion cloud center of mass position and trajectory for a single
representative particle at all times during the 50 ms simula-
tion. In (b) the capacitance matrix method is used to maintain
the cylindrical boundary condition. The cloud density is ini-
tially uniform and the ions start at rest. Parameters include
5000 simulation particles, m /z 150, a 128 X 128 xy computa-
tional mesh with ground on the xy electrode boundaries, a 1-T
magnetic field directed along the z-axis and a 1.9-us time step.
The ion cloud, consisting of 5000 simulation particles, each of
m /z 150 and charge 200 e, models an ion cloud composed of
1x 10° singly charged ions.

which assumes that the ion cloud is a line charge
[30]. These frequencies are comparable in magni-

tude to single ion magnetron frequencies, indicat-
ing that efforts aimed at eliminating magnetron
motion in ICR traps are only meaningful when
space charge effects are negligible since image
charge-induced rotation is analogous to mag-
netron motion. The image charge-induced rota-
tion is faster in the trap with circular cross-sec-
tion (5 cm trap diameter) compared to the square
cross-section trap (5 cm width) owing to a smaller
time-averaged ion cloud-electrode wall separation
distance for the cylindrical wave guide. The cen-
ter of mass trajectories are also different for the
two wave guides. The ion cloud in a cylindrical
wave guide follows a circular trajectory with a
constant speed while in a square wave guide the
trajectory is box-shaped, owing again to the E X B
drift which indicates that the cloud trajectory
follows an equipotential. In contrast to the cylin-
drical trap, the center of mass speed for an off-axis
ion cloud in a trap with a rectangular boundary is
not constant. In Fig. 7a for the square wave guide,
the ion cloud center of mass moves faster the
closer the cloud is to an electrode wall resulting
in a non-uniform speed over the trajectory (ie.
the cloud is slowest at the trap corners).

A more pronounced and ubiquitous dynamical
effect is the internal E X B rotation arising from
the ion cloud’s own internal Coulomb electric
field. This rotation is observed in Fig. 7 for one of
the particles within the ion cloud as the spiral
curve about the center of mass trajectory. The
internal E X B rotational frequency, o,, is ap-
proximately (27r) 1.0 kHz for both Fig. 7a and b,
estimated by just counting the oscillation periods
a single particle within the ion cloud undergoes
during the 50 ms detection time. This frequency is
directly comparable to an analytical estimate
based on the assumptions that the density is
constant and that the image charge has a negligi-
ble effect on the internal cloud dynamics. The
internal E X B rotation frequency w, for an in-
finitely long cylindrical cloud of uniform density is
(11]

-
@ = 2¢,B (6)
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With n=7.1Xx10" m 3, g=e and B=1T, the

theoretical w, = (27) 1.02 kHz which is in very

good agreement with the xyPIC simulation result

based on the trajectory of a single particle within

the ion cloud. A more general formula which is
valid for all constant density ellipsoidal ion clouds,

not just rod-shaped, has been reported previously

[43].

Thus far, the off-axis ion cloud represents a

zero temperature equilibrium since all particles

start from rest and the density is uniform across

the cloud. Finite Larmor radius effects are now
included by first thermalizing the ion cloud with
1.5 mtorr He collision gas, which has a 300-K
Maxwell-Boltzmann distribution, for 2 ms. This
collision time and pressure are sufficient to give
an average of ~ 100 collisions/ion. Subsequently,
the bath gas is removed and the particles followed
for a relatively long detection period. Fig. 8 plots
particle positions for the thermalized off-axis ion
cloud. The remaining simulation parameters are
identical to those given in Fig. 7a for the square
trap. While the ion cloud appears diffuse due to
the Gaussian density profile, there is no notice-
able difference between the center of mass trajec-
tories for 300 K (Fig. 8a) and 0 K (Fig. 7a).
However, there are differences in the dynamics of
individual particles within the cloud. This is evi-
dent in Fig. 8b which plots the trajectory of a
single particle within the 300 K off-axis ion cloud,
showing the finite cyclotron motion in addition to
the internal E X B rotation. The internal rotation
frequency for this particle is ~ 0.9 kHz, some-
what less than the ~ 1.0 kHz observed for the 0
K case described above. This reduction in fre-
quency is attributable to a commensurate reduc-
tion in number density as a result of ion-neutral
collisions. The trajectory plotted in Fig. 8b is for a
particle in the high velocity tail of the Maxwell-
Boltzmann distribution, resulting in an observable
cyclotron orbit superimposed on the larger orbital
radius internal E X B rotation. Three general
motions are observed in Fig. 8b for an individual
ion within the ion cloud: the relatively slow image
charge-induced E X B drift around the trap geo-
metric center; the internal ion cloud E X B drift;
and the fast cyclotron motion.

Space charge-induced internal ion cloud rota-

(a)

274

(®)

Fig. 8. Dynamics of an off-axis thermal 300-K ion cloud in a
square wave guide. (a) Particle positions and center of mass
trajectory. (b) The trajectory of a single representative particle
chosen from the distribution. The thermal equilibrium is
achieved by allowing the initially cold ions to undergo ~ 100
collisions /ion with a 1.5 mtorr He bath gas for 2 ms. Subse-
quently, the bath gas is removed and the particles followed for
an additional 50 ms. The other simulation parameters are
identical to those in Fig. 7a.

tion is an ubiquitous phenomenon present in
practically every FT-ICR experiment. The inter-
nal cloud rotation is of fundamental importance
to understanding charge particle confinement,
stability of coherent modes, and mode locking
[11,25,33,43]. Stability enhancement owing to the
internal ion cloud Coulomb E X B drift may be
an important reason why FT-ICR mass spec-
trometers achieve ultrahigh resolution [43].

3.2.2. Merger of two off-axis charge columns
There is an exact analogy between the equa-
tions of motion governing the two dimensional
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E X B drift and two dimensional fluid dynamics.
The 2D (xy) E X B drift dynamics are isomorphic
to the 2D Euler equations for an incompressible
inviscid fluid [24-27,31]. The fluid analogy is that
charge density is proportional to fluid vorticity.
Hence, surface charge perturbations on charged
columns, called diocotron modes, are equivalent
to surface ripples on extended fluid vortices [24].
This is an important problem since, for example,
planetary atmospheres are approximately near in-
viscid (high Reynold’s number) 2D fluid flows.
The previous simulations on a single off-axis
charge column are equivalent to the dynamics of
a fluid vortex. The most famous example of a
long-lived near inviscid vortex in nature is
probably Jupiter’s red spot. The 2D Euler equa-
tions are of intense current interest since this
dynamical system exhibits turbulent flow for many
initial distributions [27].

The fluid analogy implies that the 2D drift
dynamics for two off-axis charged columns are
equivalent to the dynamics of two extended fluid
vortices. An amazing result, which is verified by
electron plasma experiments, is that if the ion
clouds are sufficiently close they will merge into a
single charge distribution [25]. Fluid calculations
and experiment show that vortex merger takes
place if the initial distance between two off-axis
charge columns is less than about 1.6 times their
diameter [25]. Since this is a quantitative result
for a very interesting dynamical system, we have
simulated the dynamics of two off-axis ion clouds
for different initial separation distances as a par-
tial test of the accuracy of the xyPIC code.

Two identical charge columns are initially sepa-
rated from each other by displacing each column
an equal distance from the trap center along the
x-axis. The two charge columns are each 0.3 cm in
radius with initial separation distances between
their centers ranging from 0.9 cm and 1.14 cm,
corresponding to initial separation distances rang-
ing from 1.5 and 1.9 times the diameter of one of
the charge columns. There are 5000 particles with
m/z 100 and g =e¢ in each charge column. The
initial number density is 3.5 10° cm~3. The
particle trajectories are followed through time.
Fig. 9 and Fig. 10 show particle positions at

different times for three different initial separa-
tion distances.

Fig. 9 shows snapshots of particle positions at
different times when the initial separation dis-
tance between cloud centers is 1.5 times the di-
ameter of one cloud. This simulation clearly shows
vortex merger. On the other hand, in Fig. 10a and
b the initial separation distances between cloud
are 1.7 and 1.9 times the cloud diameter, respec-
tively. The vortices (charged rods) do not merge
into a single vortex for these latter cases, but
instead rotate around each other. These simula-
tions are in agreement with experimental data on
two extended charge columns confined in a Pen-
ning-Malmberg trap [25].

From Fig. 9, if the two vortices are closer than
the critical separation distance of about 1.6 times
the column diameter, then merger occurs on a
time scale on the order of approximately one-half
of a revolution period of the two columns owing
to their E X B drift. An estimate of the revolution
period for two charge columns (neglecting image
charge), each with radius p,, separated by a dis-
tance s is

T

87T80B( s )2 o

ng \2p,

With n=35%x10" m™ B=1T, g=e¢, and
s/2p. = 1.5, corresponding to the conditions in
Fig. 9, the time-scale for merger to occur based
on Eq. (7) is approximately 7/2 =9 ms, in order
of magnitude agreement with the simulation.

3.2.3. Kelvin-Helmholtz instability in a hollow beam

This section describes a series of computer
experiments on hollow beam distributions. A hol-
low beam ion cloud is a hollow cylinder of charge
whose cross-section in the xy plane is ring-shaped.
These hollow distributions exhibit very interesting
dynamics, most notably the Kelvin-Helmholtz in-
stability [26]. This instability arises due to the
unfavorable velocity shear across the hollow
cylinder distribution. In non-neutral plasma ex-
periments employing Penning-Malmberg traps
this distribution is created, for example, by
grounding one of the end cap potentials for a

e
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Fig. 9. Vortex merger in two off-axis charge columns. Particle positions at nine different times in the simulation run are plotted.
The initial separation distance between column centers equals 1.5 times the diameter of one column, Parameters include: p, =03
em, 10* simulation particles, 128 X 128 mesh, m /z 100, B =1 T, and an initial number density of 3.5 X 10° cm ~>. The confinement

geometry has a width equal to 5 cm.

short time. Hollow beam distributions are un-
stable, evolving into a number of vortices due to
Kelvin-Helmholtz instabilities (also called dio-
cotron instabilities) [26]. Usually, these vortices
evolve through a succession of vortex mergers
towards an axially symmetric equilibrium. For
other initial distributions, several of the resulting
vortices may be exceptionally long-lived, moving

chaotically about a non-uniform background vor-
ticity. Under certain circumstances, a new
metastable fluid equilibria, called a vortex crystal,
has been observed in experiments [27].

The ring ion clouds used in our simulations
consist of 10* particles and an initial number
density of 7.1 X 10° cm™*. The m /z 100 particles
are confined by a 2.5-cm radius grounded cylinder
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Fig. 10. Dynamics of two off-axis charge columns at initial
separation distances equal to (a) 1.7 and (b) 1.9 times the
diameter of one charge column. Other parameters are the
same as in Fig. 9.

aligned parallel to a 1-T magnetic field. The outer
radius of the initial distribution is 1.0 cm in all
simulations while the inner radius is varied in
different simulation runs. Since the confinement
geometry is cylindrically symmetric and like parti-
cle interactions conserve angular momentum, the
canonical angular momentum about the z-axis is
a conserved quantity in addition to the total en-
ergy. The canonical angular momentum and total
energy are conserved to within 0.1% in our simu-
lations.

The first simulation involves an initially hollow
distribution whose outer and inner radii are 1.0
and 0.75 cm, respectively. Fig. 11 plots particle
positions at nine different times in the simulation.
The circular boundary is the boundary of the
2.5-cm radius confinement cylinder maintained at

zero potential. This hollow density profile is un-
stable as already evident by 2 ms into the simula-
tion. At 2 ms the Kelvin-Helmholtz instability,
with fastest growing unstable azimuthal mode
number equal to five, is evident as the ring breaks
into five density clumps. By 22 ms into the simula-
tion, these density clumps (vortices) evolve
through a series of vortex mergers into an approx-
imately axially symmetric equilibrium whose den-
sity maximum is close to the trap symmetry axis.

The number of vortices which result at the
onset of instability depend on the ratio of ring
radius divided by the ring thickness [26]. The
greater the radius to thickness ratio, the greater
the number of resulting vortices. Our simulations
are in agreement with this result. Fig. 12 shows
the initial onset of instability for four different
thickness rings. The outer radius is 1 cm with the
ring thickness indicated in the figure. Further-
more, the number of vortices at the onset of
instability (this number is equal to the fastest
growing unstable azimuthal mode number) are in
reasonable agreement with experiment [26]. The
simulations predict that the mode number of the
fastest growing unstable diocotron mode in-
creases approximately linearly with increasing ring
radius to ring thickness ratio. In addition the
proportionality constant is in reasonable agree-
ment with experiment [26].

While many initial hollow beam distributions
evolve through successive events of vortex merger
and turbulent mixing, analogously to Fig. 11, to-
wards a single axially symmetric equilibrium, this
is not always the case. We find that for suffi-
ciently thin initial ring distributions that several
of the vortices can be exceptionally long-lived.
For some initial distributions, the final equilib-
rium is a vortex crystal state characterized by a
small number of vortices superimposed on a near
uniform density background [27]. Fig. 13 shows
snapshots in the long time-scale dynamics of a
hollow beam ion cloud (outer radius 1.0 cm, inner
radius 0.85 cm) that leads to a vortex crystal. The
final equilibrium state in this simulation is five
high density vortices, arranged in a pentagon,
superimposed on a lower density background that
does not reach the cylinder wall. Both the back-



T L WS

290 D.W. Mitchell, R.D. Smith / Intemational Journal of Mass Spectrometry and Ion Processes 165 / 166 (1997) 271-297

0 ms

Fig. 11. Particle positions at nine different times in the evolution of a hollow beam ion cloud whose outer and inner radii are 1.0 cm
and 0.75 cm, respectively. The circular boundary is the boundary of the grounded confining cylinder whose radius is 2.5 cm. Other

parameters include: 10* simulation particles, 128 X 128 mesh, m /z 100, B=1T, and an initial number density of 7 X 10 cm

ground vorticity and vortices (the higher density
regions) are rotating about the trap symmetry axis
owing to the E X B drift. However, in the vortex
crystal state the vortices maintain their relative
position with respect to each other. Other initial
conditions can lead to different final arrange-
ments of higher density regions. Recently, vortex
crystals have been observed in non-neutral plasma
experiments [27]. Both the experimental data and
our simulations have a number of similarities in
the vortex crystal state. The vortex crystal is char-
acterized by higher density vortices superimposed
on a nearly uniform low density background. Fur-
thermore, the background vorticity does not reach
the wall of the confining cylinder. The origin of
vortex crystallization is not yet understood, though
vortex crystals likely represent a new metastable
inviscid fluid state. Since energy is not dissipated
in the simulation, indicating that no cooling has

_.3~

occurred, vortex crystals have a different origin
than ion or Coulomb crystals [12,21]. It is left to
future work to determine the origin and signifi-
cance of vortex crystallization.

3.2.4. Image charge detection of coherent cyclotron
motion

The PIC simulators have, thus far, been ap-
plied to ion clouds which have not undergone
cyclotron resonance excitation. We present below
a simple application of particle-in-cell simulation
to coherent cyclotron motion in a single m /z ion
cloud. This simulation demonstrates image charge
detection and the reliability of the particle simu-
lator xyPIC by showing that certain physical
properties remain conserved during the detection
period. These results serve as a benchmark test to
give assurance in the reliability of our codes to
make realistic predictions. FT-ICR-MS relies on
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Fig. 12. Particle positions at the onset of Kelvin-Helmholtz instability in four different thickness hollow beam distributions. The
outer radius of the initial distribution is 1.0 cm with the ring thickness (0.05, 0.15, 0.25, 0.50 cm) indicated. Other parameters are the

same as given in Fig. 11.

coherently exciting the cyclotron modes of dif-
ferent m /z ions, then detecting the induced dif-
ferential charge on opposing electrodes. There is
no reason why cyclotron resonance cannot be
treated by the particle-in-cell method. Since the
potential (trap + space charge + image charge) is
correct everywhere within the confinement
geometry, including at the electrode boundaries,
with the PIC method, the induced charge on any
electrode boundary is directly calculable from the
potential. The induced surface charge density o,
is directly proportional to the normal electric field
at the electrode boundary E, by the simple
Gauss’s Law result

o= —¢g,E, (8)

Since o; has units of charge per area, the induced

charge at a particular electrode is computed by
integrating o, over the electrode surface. For a
capacitively dominated detection circuit, the de-
tected voltage transient is equal to the induced
charge (at each time step) divided by the circuit
capacitance. This method for calculating the in-
duced charge is very accurate since an exact solu-
tion to the finite difference form of Poisson’s
equation is solved at every time step by direct
Poisson solvers.

As a partial test of this procedure, a 0.3-cm
radius ion cloud containing 1 X 10° e total charge
was placed at the center of a 5-cm square trap.
Solving Poisson’s equation for this system with a
128 X 128 computational mesh, then calculating
the induced charge on all four electrodes by the
above procedure yielded a total induced charge
equal to the charge contained in the trap to
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better than 13 significant figures, which is close to
machine precision. For all practical purposes, the
PIC method for calculating the induced charge is
exact.

The direct PIC method for calculating the in-
duced charge more closely approaches the actual
experimental procedure for measuring the in-
duced charge than the previously used reciprocity
method [28,44]. This is not to imply that there is
anything inherently wrong with the reciprocity
approach (both procedures should give identical
results), just that a computer experiment carried
out by the PIC simulation method closely models
the major aspects of laboratory-based experi-
ments. The reciprocity method is an elegant and
fundamental result in electrostatics that is partic-
ularly well adapted to single or few ion simula-
tions. On the other hand, since the total potential
is known at all time and space with the PIC
simulation method, measuring the induced charge

0 ms

in a PIC computer experiment is very simple. In
the reciprocity method, the induced current is
calculated from a knowledge of every ion’s posi-
tion (in order to determine the detection electric
field associated with that ion) and velocity. Of
course, the experiment does not measure the
signal this way. During the detection process the
experiment measures the induced charge on se-
lected electrodes, regardless of where each indi-
vidual ion is located or its velocity components.
Since the PIC method solves Poisson’s equation
self-consistently at each time step everywhere
within the trap, the induced charge at a particular
electrode is directly solved in analogy with the
experiment. In particular the PIC method for
finding the induced charge only relies on a
knowledge of the electric field at the electrode,
and not directly on the position and velocity of
every particle within the trap.

The particle-in-cell simulator xyPIC is used to

Fig. 13. Long time-scale dynamics of a hollow beam ion cloud to a vortex crystal state. The outer and inner radii of the initial
charge distribution are 1.0 and 0.85 cm, respectively. All other parameters are the same as given in Fig. 11.
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demonstrate a simple application of measuring
the difference in induced charge between two
opposing detection electrodes using Eq. (8). In
the PIC simulation a relatively large ion cloud
(0.5 cm radius) initially located at the trap center
(5 cm square cross-section) is first thermalized to
300 K by ion-neutral collisions with 1.5 mtorr He
applied for 2 ms. Subsequently, the collision gas is
removed with the ion cloud remaining in a 300-K
thermal equilibrium state. The ion cloud consists
of 2 X 10* simulation particles (m /z 100), each
with 150 e charge for a total charge of 3 x 10° e
in the ion cloud. This ion cloud, therefore, models
3Xx 10° singly charged m /z 100 ions. The ion
cloud is excited to a coherent cyclotron radius by
applying a linear dipolar chirp electric field which
is swept from m /z 300 to m/z 50 in 150 us.
The post-excitation signal, calculated using Eg.
(8), is followed for 9 ms. The time step used in the
simulations is 0.16 us. Approximately 61 X 103
time steps are used in each simulation requiring
about 7 h of CPU time on a RISC 6000 work-
station.

The Fourier transform magnitude spectra of
the detected signals are plotted in Fig. 14 for two
different simulation runs corresponding to dif-
ferent coherent cyclotron radii. In Fig. 14a and b,
the coherent cyclotron radii are 0.375 cm and 1.5
cm, respectively. Negligible damping of the tran-
sicnt and coherent cyclotron motion were
observed in the simulations. The large cloud ra-
dius was chosen to demonstrate that coherent
cyclotron motion is stable for a single m /z even
when the coherent cyclotron radius is smaller
than the ion cloud radius. While a large radius
ion cloud is used in these simulations, this is not a
requirement of the PIC method. Additional simu-
lation runs using ion clouds with radii as small as
0.1 cm have been carried out, showing similar
results. In particular, the PIC simulation method
can be reliably used for any size ion cloud which
is greater than one computational mesh cell width
(~0.04 cm for the parameters used here, ie.
128 X 128 grid and 5 cm trap width), correspond-
ing to the spatial resolution limit owing to a
simulation particle’s finite size.

Fig. 14a represents an ion cloud whose cy-
clotron radius (0.375 cm) is less than the radius of
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Fig. 14. Fourier transform magnitude spectra of the differen-
tial charge induced on opposing detection plates for an m /z
100 ion cloud whose coherent cyclotron radius is (a) 0.375 cm
and (b) 1.5 cm. An initially cold ion cloud consisting of 3 x 10°
e total charge and radius 0.5 cm is initially placed at the
center of a square boundary trap whose edge length is 5 cm.
The cloud is thermalized to 300 K by collisions with a 1.5
mtorr He bath gas for 2 ms. Subsequently, the cyclotron
motion is coherently excited by a linear dipolar frequency
sweep excitation, then detected for 9 ms. Other parameters
include B=1 T, 20 X 10® simulation particles each carrying
150 e charge and m /z 100, a 128 X 128 xy computational
mesh, and a 0.16-us time step.

the ion cloud (0.5 cm). A movie of the particle
positions and the detected signal indicated negli-
gible damping or loss of coherence for this ion
cloud over the 9 ms transient. The magnitude
spectrum shows the effective cyclotron frequency
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w, (very close to gB/m since there is no applied
trap potential). There is very little third harmonic
for such a small cyclotron radius/trap width ra-
tio. Fig. 14b is the magnitude spectrum for a
simulation run where the coherent cyclotron ra-
dius is 1.5 cm, which corresponds to 60% of the
maximum allowed radius. The third harmonic 3w,
is much larger for this case owing to the non-lin-
earity of the detection circuit which is greater at
larger cyclotron radii relative to the trap width
ratios [28]. The ratio of third harmonic to first
harmonic amplitudes in Fig. 14b is approximately
0.1. In comparing the relative frequency of the
fundamental between Fig. 14a and b, we find that
w, is down-shifted at higher cyclotron radii due
to the image charge interaction in a magnitude
which is consistent with simple line charge models
for the image charge. Transients considerably
longer than 9 ms, corresponding to about 1400
cyclotron periods, are required in order to make
detailed comparisons with theoretical models,
owing to the small magnitude of the frequency
shift (~ 50 Hz) compared to the spectral peak
width (~ 110 Hz).

Two important quantities in our simulations
are the total energy and angular momentum about
the magnetic field. These quantities provide
benchmarks with which to test the reliability of
the simulation. Fig. 15 plots the post-excitation
histories of various quantities extracted from the
simulation described in Fig. 14b for the 20000
particle ion cloud whose coherent cyclotron ra-
dius is ~ 1.5 cm and number density is 7.6 X 10°
cm ™3, Of particular interest are the total energy
E,,. and the total canonical angular momentum
about the magnetic field L,. Both E,, and L,
are expected to be nearly conserved (during the
time intervals where ion-neutral collisions are
absent) and provide a test to the accuracy of
physical predictions made by our particle simula-
tors. The total energy is the sum of the total
kinetic and the total electrostatic energies,
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Fig. 15. Time dependence of various quantities for the post-
excitation simulation run described in Fig. 14b. (a) Kinetic,
electrostatic and total energies; (b) mechanical, magnetic and
total angular momenta about the z-axis; and (c) ensemble- |
averaged coherent cyclotron radius (R) and mean particle-
center of mass separation {r— R, ).
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The kinetic energy summation is over all particles
where v, and M, are the velocity and mass of
the kth simulation particle, respectively. For the
simulation conditions used here (see Fig. 14b),
M, =15000 u since each simulation particle rep-
resents 150 single ions of mass 100 u. The integral
on the right in Eq. (9) is the electrostatic energy,
where p, @ and dr are the charge density, elec-
trostatic potential, and volume element, respec-
tively. The electrostatic energy is numerically
evaluated by replacing the integral in Eq. (9) with
a summation over grid variables p; and ®;, where
i and j are grid indices, and replacing the volume
element dr by the volume of a computational cell
L.

The total, kinetic and electrostatic energies are
plotted in Fig. 15a for the post-excitation particle
ensemble. The kinetic energy is much larger than
the electrostatic energy owing to the relatively
large cyclotron radius. The total energy is con-
served to within 0.01% in this simulation demon-
strating very good energy conservation.

The second property of interest is the total
canonical angular momentum about the magnetic
field, called total L,. The total L, is the sum of
two individual contributions,

B
LZ=ZMk(rkXUk)z+72ri}% (10)
K K

where the summations are over all of the simula-
tion particles and Q, is the total charge con-
tained in the kth simulation particle. The first
and second contributions on the right hand side
of Eq. (10) are the mechanical and magnetic field
angular momenta, respectively. These quantities
are plotted in Fig. 15b. If the confinement geome-
try is cylindrically symmetric, then L, should be a
conserved quantity. However, the simulations in
Fig. 14 employed a trap with a square cross-sec-
tion which invalidates the angular momentum
conservation argument. It is very interesting that
over an observation time of 1400 cyclotron peri-
ods the total angular momentum is conserved to
better than 0.1%, even with our use of a box trap.

The coherent cyclotron motion is remarkably
stable for these single m /z simulations, an

observation which attests to the ability of particle-
in-cell simulations to accurately follow the cy-
clotron dynamics of tens of thousands of particles
over very long detection periods. Two quantities
which characterize the relative stability of the
particle ensemble are the coherent cyclotron ra-
dius and the ion cloud size. For an ensemble of N
particles with cyclotron frequency o,, the coher-
ent cyclotron radius is given by

1 Ny
®= | £

N 2
+( Y uyk) (11)
k=1

where v, and v, are the velocity components of
the kth particle. A relative measure of an ion
cloud’s size is given by the mean particle displace-
ment from the cloud’s center of mass R,

N
<r__Rcm>=—N' erk—Rcml (12)

This measure is proportional to and less than the
ion cloud radius. If {(r—R_,) is time invariant,
then the ion cloud radius is also constant. On the
other hand, if the ion cloud expands during the
detection period, then {r —R_,) increases with
time.

Fig. 15c plots the coherent cyclotron radius
(R) and the mean particle position-center of
mass separation distance {r—R_,) during the
post-excitation trajectory for the many particle
simulation. Both of these quantities remain virtu-
ally invariant during the 9 ms detection period,
partially demonstrating the reliability of the parti-
cle-in-cell method and the leap frog integration
scheme to accurately follow the dynamics of real-
istic numbers of interacting particles which have
undergone cyclotron resonance.

4. Concluding remarks

The particle-in-cell method solves the Coulom-
bic many body problem with a computational
effort that scales linearly with the number of
interacting particles. This method accurately



W TRy~ AR

296 D.W. Mitchell, R.D. Smith / International Journal of Mass Spectrometry and lon Processes 165 / 166 (1997) 271-297

simulates the behavior of space charge in realistic
devices since the potential is correct at the device
electrodes. Elastic ion-neutral collisions are in-
cluded by the Monte-Carlo method. It is possible
to carry out realistic computer experiments with
the PIC simulation method which are complimen-
tary to laboratory experiments since PIC includes
the combined effects of externally applied ficlds,
Coulombic interactions between large numbers of
interacting particles and image charge effects,
with very little approximation.

The two dimensional PIC codes described in
this work, zPIC and xyPIC, have been applied to
a number of examples of relevance especially to
ICR, including the maximum number of ions
which can be confined in a cylindrical trap, colli-
sional cooling in a combined trap, image charge
and internal ion cloud induced E X B drifts in an
off-axis ion cloud, vortex merger, Kelvin-Helm-
holtz instability, and cyclotron resonance.

Space charge sets limits to the maximum num-
ber density and maximum total charge which can
be confined in an ICR trap. The maximum num-
ber density which can be achieved in FT-ICR is
the Brillouin limit which is proportional to B?/m
[34,42]. The maximum total charge which can be
confined in an ICR trap is determined by the
condition that the space charge potential cannot
exceed the depth of the confinement potential.
Particle simulations demonstrate good agreement
with this simple model. In particular, the maxi-
mum total charge which can be confined in a
cylindrical trap (trap symmetry axis coincides with
the cylindrical charge distribution symmetry axis)
is directly proportional to the trapping well depth
and is independent of the magnetic ficld under
most typical conditions. These typical ICR condi-
tions are that the magnetic field and trapping well
depth are sufficiently high and shallow, respec-
tively, that the ion cloud reaches the trap elec-
trodes before the ring electrode if ions are cont-
inually introduced into the trap.

Simulations demonstrate that as the trap fills to
capacity with ions, the space charge potential
cancels the trap potential. This process is shown
in Fig. 4. At high space charge conditions the
approximately quadrupolar potential for a cylin-
drical ICR trap is modified by the space charge

potential to a particle-in-a-box potential along the
z-axis. At the z-confinement limit, the trapping
well potential is exactly cancelled by the space
charge potential along the z-axis. Since the cylin-
drical (rz) particle-in-cell simulation code was
applied to cylindrically symmetric systems, the
two-dimensional results are identical to three-
dimensional, by symmetry.

The Cartesian (xy) particle-incell simulator
was applied to the dynamics of extended charge
columns confined by a long grounded confine-
ment geometry aligned parallel to an applied
magnetic field. A single off-axis charge column
revolves around the trap symmetry axis and its
own symmetry axis owing to image charge and
internal Coulomb E X B drift, respectively. The
measured drift frequencies from the simulations
are in quantitative agreement with analytical
models.

The exact isomorphism between two dimensio-
nal E X B dynamics and the Euler equations de-
scribing an incompressible inviscid two dimensio-
nal fluid have recently been exploited in non-neu-
tral plasma experiments [24-27]. We have carried
out numerical simulations on two off-axis charge
columns demonstrating vortex merger for suffi-
ciently close separation distances. The critical
separation distance for vortex merger to occur is
found to be in quantitative agreement with exper-
iment. In addition, we have carried out a series of
simulations on hollow beam initial charge dis-
tributions. Hollow distributions break apart into a
number of vortices owing to Kelvin-Helmholtz
instability. The number of vortices created at the
initial onset of instability, is found in the simula-
tions to increase approximately linearly with the
ratio of the distribution radius divided by the
distribution thickness, in reasonable agreement
with experiment [26]. An unexpected result of our
simulations on hollow beam distributions is that
the long time scale dynamics of a sufficiently thin
ring ion cloud may evolve to a vortex crystal state,
characterized by a relatively small number of high
density vortices geometrically arranged on a near
uniform low density background vorticity. Experi-
ments have recently observed vortex crystals,
which may represent a new metastable near invis-
cid fluid equilibrium [27].
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