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ABSTRACT

A theory of ion space-charge influence on the observed ion cyclotron resonance frequency
in static field ion traps is presented. The dependence of this influence on ion density, ion
cloud shape, and trapping geometry is investigated. Four trapping geometries are specifically
analyzed: the Penning trap, the cubical ICR cell, the common rectangular ICR cell, and an
elongated ICR cell. This treatment is readily extended to other geometries. The theory applies
to common situations where the exciting or detecting antennae fields are not homogeneous,
and individual particle motions are excited /detected as opposed to center-of-mass motions.

INTRODUCTION

The storage of charged particles in an electrostatic potential well and a
strong static magnetic field has proven to be a useful technique for the study
of a wide variety of physical phenomena since first used by Penning to
investigate gas discharges [1]. Static field ion traps, called ion cyclotron
resonance (ICR) cells, have been used extensively in chemical physics for the
gas-phase study of ion/molecule reactions and selected reviews of this
literature are noted [2—4]. The ions stored in these instruments are detected
by resonance with the eigenfrequency near the ion cyclotron frequency,
w, = qB/m, where q is the ion charge, B is the magnetic field and m is the
ion mass.

Ion cyclotron resonance cells have also been used successfully for preci-
sion mass spectroscopy. Careful work by Mclver and coworkers [5,6] gener-
ated an absolute mass calibration for a mixture of 12 masses ranging from
46-264 u with an average error of 77 p.p.m. They also noted in this work a
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shift in the resonance frequency as ions were ejected from the trap. Ledford
et al. [7] empirically fitted the ion number dependence for a specific set of
experimental conditions and obtained a better (3 p.p.m.) absolute ion mass
calibration. Introduction of the Fourier transform detection technique [8-10]
which does not eject ions on detection, has made considerable improvements
in resolution (M/AM = 10°), which has been exploited by Ledford et al. [7],
and also promises even more improvement in ICR precision mass spectros-
copy. It has become clear, however, that to realize fully the potential of this
mass spectroscopic technique for high accuracy, a more complete under-
standing of the effects of space-charge must be developed. Using the
advanced ICR techniques alluded to above and the space-charge corrections
developed in this paper, Francl et al. [11] have made mass determinations
with average errors less than 1 p.p.m.

On the other hand, Wineland et al. [12] have achieved conservatively
estimated uncertainties of 0.34 p.p.m. in a mass determination using a
Penning trap and laser-fluorescence mass spectroscopy, operating in such a
manner that no corrections were needed for space-charge or other ion
number effects. They project ultimate accuracies of near 1 part in 10'3, It has
been emphasized by Wineland and Dehmelt [13,14] that the space-charge
associated with an ion cloud consisting of particles of a single charge-to-mass
ratio, g/M, cannot and does not influence the center-of-mass motion of the
cloud. Thus, if the antennae used to excite the ions or to detect them interact
only with the center-of-mass, there will be no shift of the observed resonant
frequencies. Such, for example, is the case for ions confined very near to the
center of a Penning trap, or for other cases where the exciting or probe fields
may be considered homogeneous. These “no shift” situations have been
achieved for charged particle clouds of a single /M [15]. However, for most
ICR work and for the work we have done with Penning traps where ion
cloud radii are moderate, the antennae fields are not homogeneous, and one
is dealing with the frequencies of individual ions in net fields originating
from those impressed and those from surrounding ions. It is such situations
to which the analysis of this paper is addressed and to which the derived
corrections should be applied.

Recent investigations [16] into the dynamics of trapped ions have led to a
greater insight into the behavior of ion clouds in static field traps. These
investigations were motivated by work with electron—ion collisions [17-19]
and low temperature ion/neutral species reactions [20]. From this work a
more detailed model of the ion cyclotron resonance frequency has emerged,
which includes the contribution of jon space-charge. This model is applicable
not only to the highly accurate quadrupole fields of our systems, but also to
the cubical and rectangular geometries of widely used ICR cells.

Four ion trap geometries will be considered, all currently used in ion trap
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b

Fig. 1. Ton electrode trap geometries: (a) “Penning” trap, dimensions ta» 2g; (b) general ICR
geometry, dimensions 4, b, ¢ (x, ¥, 2). ‘

instruments, each of which uses a strong static uniform magnetic field that is
oriented in the positive z direction. The magnetic field assumed to be aligned
along the z axis confines the ions radially, and an applied electrostatic
potential confines the ions in the z direction. The various trap configurations
discussed here are illustrated in Fig. 1. Figure 1(a) depicts the “Penning”
trap first analyzed by Byrne and F argo [21] for electrons, and currently used
for a wide variety of spectroscopy, metrology, and atomic collisions applica-
tions [15-20,22-26). This trap is cylindrically symmetric, and the trapping
electrodes (two end caps and a ring) are carefully machined along equipoten-
tials of the saddle potential given in cylindrical coordinates by

V(r,z)=VGT(—r2+222+r02) (1)

where G is a trap geometry factor, G,=1/( ¢ +2z2), r, and z, are
characteristic dimensions shown in Fig. 1(a), and ¥V is the potential applied
between the two end cap electrodes and the ring electrode.

Figure 1(b) depicts a general ICR cell where the x, y and z dimensions are
given by a, b and ¢, respectively. The two most widely used ICR cells have
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cubical (a = b= c) and rectangular(a = ¢ < b) geometries. An elongated cell
(a=b <c) introduced recently by Hunter et al. [27] has many advantages
for mass spectrometry over conventional ICR cells. The exact electrostatic
potentials produced by the rectangular flat plate electrodes common to all
the ICR cells is given [28] in Cartesian coordinates by

V(x,y, Z)= VO" 16772(VT— VE))
© o cosh(kmnzz)(—1)'"+"cos[(2m+ l)ﬂ]cos[(2n+ 1)%))}
x¥ X ‘ 3

m=0 n=0 COSh(kmnﬂ/z)(zm + 1)(272 + 1)

(2)
where ¥, and V. are applied electric potentials shown in Fig. 1(b). In all of
the ICR geometries, it can be shown that the potentials are essentially

harmonic in a large region near the center of each cell and are closely
approximated by [7,27,28]

1 a , B, o B\ ,
V(X:Y:Z)='2'(VT+ o)+ (V= 1) _'a_zx _‘b’z‘)’ + Z{‘l“b‘z‘ A
(3)

TABLE |
Geometric factors for various traps
Type Dimensions  a, 8,y Gy (m™?) Gr, (m™%)

(m) [eqn. (3)] [eqn. (30)] (eqn. (42)]
Penning  7=6.25x 1071 L _1amx10f T =2942x10*

r02+22§ ry +2z;

zp=3.8x%x10"?

Penning 7, =1.25%10"21 3 > =3.68x10° > 2 5 =1736x10°
ry +2zq rg +2z4

zy=7.6%10"3
Cubical  /=264%x10"% a=1.3869
ICR[7] B =1.3869 a/a?=1.99x%103 2—‘; =398x10°

a
a=b=c=] v = 0.1667
Elongated 4=32x10"2 a=4.183%x10"*
ICR[27]  b=152X10"" B =4.183X10"%a/a® = 4.085X 10" Zi;i =8.170x10~"!
a

a=b<c v = 0.500
Rectangular a = 2.54 X 102 o = 2,185 Gr,=a/a*=1339x10
ICR[28] b=2889X10"28=827x10"2 Gr + Gy =34%10
a=c<b Gy =B/b*=1.05x10" '

¥

Yy=6.97x10"*
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where e, 8, and y are constants depending on the specific dimensions of the
ICR cell. Table 1 shows numerical values for the specific cases considered
here. For simplicity we will take V' = V.. — V, henceforth. From eqns. (1) and
(3), the similarity between the “Penning” trap and the ICR cell becomes
more apparent; the ions in both systems are trapped in a longitudinal
magnetic and a harmonic electrostatic field. In fact, for the cubic cell
(a=0b=c) and the elongated cell (a = b < ¢), a = B and eqn. (3) reduces to

eqn. (1).
SINGLE ION MOTION

The analysis of the motion of a single trapped ion will be considered here,
thus establishing both the conceptual framework and the formalism to be
used later in the inclusion of space-charge effects. Since we are concerned
only with the resonance frequencies, it is noted that in the underdamped
case, damping does not change the frequency at which the oscillator absorbs
energy [29], thus there is no need to consider its effects further. The
equations of motion are separable in z under the already stated assumption
that the coordinates for B and E are colinear. This means that one can solve
for the motions parallel and perpendicular to the magnetic field indepen-
dently. The trajectory along the magnetic field is that for a simple harmonic
oscillator of frequency

w, =(2K,)"" (4)
where
K, =2gVGr,/m (5)

and G, is a trap geometric factor given in Table 1.
The motion in the x~y plane is also solvable in closed form for eqns. (1)
and (3) when a = . In Cartesian coordinates the Lagrangian is written

L=im(ix*+y2) + 3mK (x* + y*) + ima, (yx — %) (6)
where
K=2gVG,/m (7)

and G is a trap geometric factor given in Table 1. Equation (6) leads to the
coupled equations of motion

i-Kx—w,y=0 (82)
J-Ky+wx=0 (8b)
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Applying the initial conditions of x(0) = x,, x(0) = %, y(0) = y, and p(0) = 3,,
and following the convention of Byrne and Fargo, R = x + iy, the trajectory
in the x—y plane is

R= gc—iw_t —_ ée—iw+t (9)
where
1 . . .
a=———[(w.xg = o) +i(w. = %o)] = 1. (102)
-+ —_—
1 . . . .
é=w ~w [(w—xo“yo)+’(w~yo“xo)]‘"'"”c (10b)
+ —

in which r,; is the guiding center radius, and , is the cyclotron radius. The
eigenfrequencies are given by

1/2]
W 4K
- I I Tl Il
=3 -3 "
for the slow drift (magnetron motion) around the z axis, and
[ 1727
0, =21+ 1—4K) (12)
2 2

for the observed ICR frequency. Thus, the ion motion is the superposition of
simple harmonic motion in the z direction at w_, a slow drift of the ions’
guiding center about the z axis at w_, and the cyclotron motion about the
guiding center at w_. Ekstrom and Wineland [30] graphically illustrate this
motion.

These eigenfrequencies for single particle motion were deduced by Byrne
and Fargo [21] for the Penning trap, and apply as well to ICR cells when
a=>b (cubical and elongated). Equation (12) for w, is identical to that of
Hunter et al. [27). It is also useful to compare the observed ICR frequency in
eqn. (12) with the commonly used expression of Beauchamp and Armstrong
[31]. They approximate the applied electrostatic potential by that between
infinite parallel plates and thus neglect the coupling term, K ,» i eqn. (8b),
obtaining '

1/2
o= (0} ~ ?)

(13)
In the limit «, > w, and both eqns. (12) and (13) reduce to

w? 2VG
Wp= 0= 0, = o=, — BT (14)

c

The physics underlying the drift at frequency w_ is straightforward. The
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electrostatic potentials given in eqns. (1) and (3) give rise to an electric field
with a radial component, E, = 2rVGr, which is perpendicular to the mag-
netic field. Therefore, an ion with a nonzero guiding center radius ree [eqn.
(10a)] has a drift velocity about the z axis

_EXB 21,.VGq P

L 5) |B!2 B (15)
Since vy, & r, this drift has definite frequency

_ lop) _ 26,V
Wy = ’ - B (16)

and is called the magnetron frequency for historical reasons. Equation (11)
for w_ gives the same result when we expand using w, > «_. This approxi-
mation, though quite good, removes the weak mass dependence in egn. (11)
which ultimately sets the mass limits for trapping with given electric and
magnetic fields.

SPACE-CHARGE EFFECTS

Reviewing eqns. (7)—(12), note that any radial electric field, E = X'r, will
give the same result provided K’ < w2/4. We will show in this section that
the principal effect of ion space-charge is to produce an additional radial
electric field, thus changing K from a constant to a quantity K’ dependent
on charge density. Using the formalism and potation from the above
development of single particle motion, we will proceed to include the
contribution of ionic space-charge. Implicit in the following analysis is the
assumption that the ion cloud can be characterized by a temperature that is
low compared to-the trapping potential energy. The dominant effects in the
thermalization of the ion cloud are determined by the relative densities of
ions and neutral species: for sufficiently low neutral densities the ion—ion
coulombic collisions will establish a Maxwell-Boltzmann velocity distribu-
tion involving a temperature which may be significantly different from the
background neutral temperature. The ion cloud will then interact with the
neutral gas to establish an equilibrium state [16]. Alternatively, if the
background density is sufficiently high, ion/neutral species collisions will
dominate the thermalization process and the ions will approach a
Maxwell-Boltzmann velocity distribution at about the same rate as they are
cooled.

For cylindrically symmetric ion clouds with a radius rp (Penning and
a=> ICR cells) the ion number density can be written [32] in terms of the
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ion temperature, 7}, as

Po (H—Po‘*’—))
S < N SRS LY Iy
Pr2) (27rkai)3/2/£exp( kT; T (17)
p(r,z)=0 r>rp

where H is the Hamiltonian, p, is the ion number density at the center of the
cell, k is the Boltzmann constant, P, the canonical angular momentum, and
the integration is over momentum space. One can estimate the nonuniform-
ity of the radial distribution by assuming the electrostatic potential is
separable, V(r, z) = V(r)+ V( z). Then the charge density becomes [32]

o(r,z)~p, exp{ 2_];; (I‘rz—l-%-nZV(z))} r<rp

(18)

p(r,z)=0 r>rp

where T' is the line width of the ICR signal. For harmonic trapping
potentials, V(z) « 22, the charge distribution is Gaussian along both r and z.
Experimentally, T' is small; thus, the radial charge distribution is nearly
uniform. A uniform radial distribution has been observed experimentally for
electrons in pure electron plasmas confined in devices of similar geometry
[33]. Ions are produced initially from neutral gas in the cell by electron
ionization, which initially localizes the ion cloud along the electron beam in
a cylinder with a radius defined by the electron beam and the ion cyclotron
radius. Thus, initially the ions form a prolate ellipsoid with uniform density.
As the ions thermalize and expand radially due to ion/neutral species
collisions, the charge distribution remains an ellipsoid of near-uniform
density, and the eccentricity and density evolve with time.

In. 1842 Thomson [34] analyzed the electrostatic potential of a uniform

ellipsoidal charge distribution, and showed that inside the distribution the
potential was given by

Vsc(x, 9, 2) = _;]Tp[Gixxz’*'Giyyz"' Gizzz] (19)
0

where G, _, Gy,, and G;, are geometric factors. Applying Poisson’s equation

to (19),

Gix+ Giy+Giz= 1 ) (20)

If the semi-major axes of our ellipsoid are aligned with the coordinate system
as shown in Fig. 2(a), with Yo > 2o > X4, two eccentricities are defined

t=(1-22/2)" (21)
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and
g=(1-x23)" (22)
The geometric factors are given by [34]

G, =1 —52)‘/2(1_5,2)1/71 u’du

23
o (1-8) (1~ g72) )

c.

Fig. 2. Ellipsoids: (a) general ellipsoid with y, > z5 > xg; (b) prolate spheroid, > g; (c)
oblate spheroid with 4 > g.
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2du
G, =(1-8)"1-¢2)7 /" “ 24
) ( ) ( ) ‘/(; (1 —$2u2)3/2(1 _$,2u2)1/2 ( )
an
— (1 e\ 01 a2 ] udu
G (=) =) A =)

For the general case the integrals must be evaluated numerically; however,
the special geometries of ion trapping instruments give rise to simplifi-
cations. In the “Penning” trap or cubical ICR cell, the ion cloud will initially
be a prolate spheroid oriented along the magnetic field (see Fig. 2(b)). In the
usual operating condition of gV > kT, this charge distribution will evolve
from prolate to oblate as the cloud cools and expands by collisions with the
background neutral gas (see Fig. 2(c)). In the elongated ICR cell the ion
cloud will remain prolate. The case of the rectangular ICR cell is more
complex, and it will be considered separately later.

Penning, cubical and elongated cells

For both the prolate and oblate spheroid cloud geometries, the ellipsoid
equations are degenerate. Equation (19) can be written

Vsc(xs)’sZ)‘%‘gg[Gi(x2+y2)+Giz22] . (26)
4]

where G, for the prolate case is given by

Gi=1/(267) ~{(1 - £2) /(2¢*))tanh™'¢ (27)

and G, for the oblate case is given by

G, = (1 — 52)1/2/(252){(ésin_1$— (1 _ 52)1/2)} (28)

Here £ is given by

£=[1-g2/n?]"" (29)

where £ is the larger semi-major axis and g the smaller (see Fig, 2). The
quantity G; is evaluated and plotted in Fig. 3 as the shape goes from extreme
prolate (infinitely long rod) to extreme oblate (infinitesimally thin disk).

To calculate the ICR frequency one need only consider the x and y
components of the space-charge electric field. Using eqn. (26) for the
space-charge potential and adding it to the applied trapping potential, a
space-charge modified X' analogous to eqn. (7) is obtained

E 2 G,
K,=_q_(_r)=q_VGl+gp\G,
m r m COm

(30)
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Fig. 3. Yon cloud geometry factors for eqn. (31). Region a shows the range of G, for typical
operating parameters in the “Penning” and cubical ICR geometries. Region b shows the
range for the elongated ICR.
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Fig. 4. A vs, mass for the “Penning” trap (r = 0.625 cm, z,=0.38 cm) with V=2V,
B =1.175 T. The lower curve is for a single particle and the upper curve is when pG; =10°

cm™3,
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where E_ is the radial component of the electric field. This K is inserted into
eqns. (11) and (12) to give the space-charge modified eigenfrequencies

w¢=¢_029_{1i[l—4(2qVGT/m+quGi/fom)/wg]l/z} (1)

To demonstrate the magnitude of the space-charge influence in eqn. (31),
Fig. 4 shows a plot of A=w,— w, in the Penning trap with V' =2} and
B=1.175 T. The lower curve shows the weak mass dependence of this
difference for the single ion solution of eqn. (12). The upper curve indicates
the influence on «, for an ion number density of 1X 10% cm™?. Before
considering additional implications of eqn. (31), the above development is
repeated here for the rectangular ICR cell.

Rectangular ICR cell

Sharp et al. [28] have shown that eqn. (3) describes the electrostatic
potential in the rectangular ICR cell (a = ¢ < b) near its center, where a = 8.
For this case, the single particle Lagrangian for motion in the x-y plane for
sufficiently small values of x and y is

L=%m()‘c2+y2)+%mex2+%mey2+%mwc(yx—)'cy) (32)

where K, and K, are analogous to the K of eqn. (7). While the equations of
motion are messy, the algebra is straightforward. Using the same methods
for eqn. (6), the eigenfrequencies are

1/2
21,2
ool | KTK 1_2(Kx+Ky)+(Kx—K),) (33)
%) w? T w? w?

If eqn. (3) were valid for values of x and y nearly out to the cell walls, as it is
for the cubical and elongated ICR systems, then by analogy with the

previous development, one could incorporate space-charge in the model by
writing

2qV. 2

Kx____‘-.’_T_GTx+E_£ " (34)
m €qm

and
2V g’p

Ky= m GTy+€0m Giy (35)

where G, and G, are given in Table 1. The G; terms are as discussed above
for the general ellipsoid which should be a good approximation of the ion
cloud’s shape [see Fig. 2(a) and eqns: (19)—(25)].
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Unfortunately, in rectangular ICR cells there is a significant fraction of
the ion density in regions where eqn. (3) is not expected to be valid. For
example, in a typical ICR cell (@ = ¢ =2.54 cm, b = 8.89 cm) with an applied
potential of 0.5 V, ion densities as high as 1.5 X 10° cm ™3 are possible [16],
and ion numbers as great as 5 X 10° have been measured [35]. Thus, the ions
fill more than 3 cm’, and the ion cloud must extend nearly 3 cm in the y
direction. This is well beyond the limits of validity [28] for the harmonic
potential approximation of eqn. (3). However, highly symmetric ICR signals
of narrow spectral width (< 500 Hz) are observed even for large numbers of
lons [2-4,35]. This implies that the space-charge modified potential must
remain harmonic. Were anharmonic terms of any great importance, we
would expect severe power broadening and asymmetrization of the funda-
mental resonance line to occur [29].

A phenomenological model for a harmonic potential in the rectangular
ICR cell can be constructed starting from the approximation to the trapping
potential given by [28]

Vs (x,y,z)=—1—(VT+ V,)+V ——oixz——ycosh(i’—v—)—I——a—-z2 (36)
which is valid over a larger spatial extent. The constants have been calcu-
lated [28] to be o = 2.185, y = 6.97 X 1074, = 15.4, § = 2.192, with @ and b
as given in Table 1. Assuming that the space-charge potential field is given
by

Vscx, 9, 2) = —qo/2€4G; x* — qp/2¢,G,, y*

2
— % Vy(%) ¥y +Vy cosh(ﬂg—;) —~qp/2¢,G,, 2> (37)

adding (36) and (37), one obtains
V(X,)’, Z) =%(VT+ VE)) + [— (V%_i- qp/ZGOG’iJ»:)‘x2
a

(24402666, )+ (2= 020, ) (39)
which is harmonic. Equation (37) is, of course, only a construct which allows
us to explain the data, and not a result from first principles. However, the
apparent stability of the ion charge distribution against the occurrence of
plasma instabilities indicates [32] that the radial electric- field with space-~
charge is monotonically increasing as in our construct.

The relationship between G, and G;,, for the rectangular ICR cell can be
established by requiring that the radial space-charge field is everywhere
parallel to that of the cell. This is justified by two facts. First, the drift
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trajectory at frequency w_ is nearly mass independent, and second, the effect
of ion space-charge on the ICR frequency is observed empirically to be

qualitatively the same as a change in applied potential [7]. With this model,
eqn. (22) becomes

§=(1-Gp,/Gp )" (39)

or for the particular rectangular ICR listed in Table 1, £ =0.9984. The
space-charge terms are related by

GTx
G, = I G, (40)

Thus, the possible range of cloud geometry factors can be parameterized by
a single variable, £, and Fig, 5 gives the range of ion cloud geometry factors,
G,,, for the rectangular ICR cell calculated from eqn. (23) using &’ = 0.9984.

TEMPORAL EVOLUTION OF THE ICR FREQUENCY

Equations (31) and (33) give the observed ICR frequency with the ion
space-charge contribution reduced to a single parameter, pG, (or pG;,). This
parameter is the product of an ion cloud geometry factor and the ion
density, both of which evolve in time. The equilibrium dimension of the ion
cloud along the z direction can be estimated [16] making use of the fact

g’
kT,/2 = (qVGTZ—~2—€—Gi)z2 (41)
¢}

2.0

I I | L
0 0.2 0.4 06 0.8 1.0
ECCENTRICITY (¢)

Fig. 5. Ion cloud geometry factors for eqns. (35), (40) and (42), from eqn, (23) with

¢'=0.9984. Region a shows the range of G;, for typical operating parameters in the
rectangular ICR cell,
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As the applied potential V is increased and T} is decreased, the ion cloud
becomes localized in the z direction (oblate, £ — 1). In the limit z — 0, we see
from Figs. 3 and 5 that the geometry factor vanishes and hence so does the
space-charge shift of w, ,_. To minimize the space-charge shift in all but the
elongated geometries, one minimizes the ion temperature and maximizes the
applied trapping potential. However, this also maximizes the ion density, p.
As the ion cloud is localized, the number of ions must be reduced to
maintain the same ion density. We also note that increasing V increases the
value of w_, giving a larger applied potential shift to the observed ICR
frequency.

The time evolution of the ion cloud in its approach to thermal equilibrium
with the instrument is governed by ion-ion collisions as well as by ion /
neutral species collisions. The ion-ion self-equilibration rapidly establishes a
Boltzmann distribution of ion energies [16,36]. Those ions in the high energy
tail of this distribution with energy greater than the trapping potential
energy “evaporate” along the z axis. This process cools the ion cloud to less
than 15% of the well depth (¢¥) in less than 25 s. Cooling of the ions to
thermal equilibrium with the instrument occurs at the ion/neutral collision
rate (~ 1 s at 1075 Pa).

After the evaporative cooling phase, charge loss is due only to collisional
radial transport across the magnetic field, though some ions may undergo
reactions with the background gas, thus changing ¢/M. The ion density, p,
will then decrease in time as the ion cloud expands. There are two competing
collisional processes that provide radial transport: diffusion and collisional
mobility {37]. However, both of these mechanisms give confinement times
which scale as B?/p, where p is the neutral pressure in the instrument. By
increasing the trapping time, the ion density evolves more slowly and the
ICR frequency changes more slowly. Trapping time may be increased by
lowering the pressure, but at the expense of increasing the thermal equilibra-
tion time,

We have observed this temporal evolution of the ion frequencies in the
Penning trap. In our instrument, observation of w, /- Tequires active detec-
tion techniques, where the ions are driven in an applied r.f. electric field
similar to ICR detection techniques [38]. These active detection schemes
perturb the quiescent ion cloud evolution. Alternatively, we can bolometri-
cally observe the motion along the z axis in the electrostatic potential well
without perturbing the ion motion [36]. The frequency of single particle
motion given in eqn. (5) is also perturbed by space-charge and is given by

2qVG 2, \'?
wz,z( q T;_qulz) (42)

m €gm

where G, is given by eqn. (20). Figure 6 shows the evolution of » = w, /2 as
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Fig. 6. Time evolution of », in the “Penning” trap (r, = 0.625 cm, z, = 0.38 cm) with m = 30
u, V=2V, B=1175 T.

a function of time for NO* ions with a background pressure of 1.3 X 10~3
Pa (1 X 107'° Torr) composed primarily of NO and H,. The ion trap was of
the Penning configuration shown in Fig. 1(a), with 2 V applied between end
cap and ring. Initially the large loss of ions due to the evaporative cooling
process lowers the ion density and alters the geometry factor, This is
followed by the slower reduction in ion density due to radial transport of the
ions. This radial evolution of the ion cloud was observed to be altered by
changes in background density and composition as expected from a confine-
ment time inversely proportional to the collision rate [16]. Although these
measurements refer to w,, the evolution is due to the ion space-charge, pG,,
which is common to eqns. (31) and (33) for w, ,_. Temporal shifts in w, for
an ICR cell have been clearly observed by Francl et al. [11].

DISCUSSION

It is emphasized again that the shifts predicted by eqn. (31) for Penning
traps and ICR cells with a = b, and by eqn. (33) for rectangular ICR cells
will be observed only if the instrument antennae detect or excite single
particle motions as opposed to center-of-mass motions. This is a common
situation as discussed earlier in this paper. ‘

There are several implications of this model for the influence of ion
space-charge on ICR frequency. Using eqn. (41) along with independent
measurements [2—4,5,28,38] of ion number and density, one can estimate the
ranges of geometric factors that are likely to occur for ion clouds in various
instruments; these ranges are bracketed by regions a and b in Fig. 3, and
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region @ in Fig, 5. The geometric factor for the ion cloud in Penning, cubical,
and rectangular ICR cells is a very strong function of the shape of the cloud
in normal operating conditions. For the new elongated ICR cell, the range of
the ion cloud geometric factor is limited, but the absolute value is 2—10 times
greater. Hence influence of space-charge for a given density is greater. The
applied potentials in this instrument [27] are similar to those used in
conventional cells [2-4], while the dimensions are much greater. This makes
the trap geometric factors smaller, resulting in much smaller electric fields.
The space-charge frequency shift in the elongated cell will be larger or
comparable to the conventional cell, but it will vary over a smaller range as
the cloud evolves. ‘

For precision mass spectroscopy in ICR cell instruments, it is important
to calibrate and make measurements at the same point in the temporal
evolution in the ion cloud. This requires that the same neutral background
pressure and composition be maintained, as well as the same values of
magnetic field, electrostatic well depth, and measurement time. To insure the
same initial ion cloud size and shape, the ionization conditions of electron
current and duration need to be controlled, and the evolution time from ion
production to mass measurement must be kept constant. Finally, as is well
known, increasing the magnetic field increases the confinement time and
slows the temporal evolution. Independent measurements of all ion eigenfre-
quencies (], w,, w_) and other techniques to characterize the. ion cloud,
such as measurement of total charge [11,27], will improve the confidence of
precision ICR mass calibrations using eqns. (31) or (33).

Francl et al. [11] have observed the ion density effects of eqns. (31) and
(33). They have made use of the knowledge of the functional dependences to
calibrate their instruments to give relative mass measurements to better than
1 p.p.m. and absolute mass measurements to the order of 10 p.p.m. Other
similar measurements have previously been reported by Locke [39].
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