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Abstract

Solenoidal (i.e. axially symmetric) magnetic field inhomogeneities, which in addition have symmeiry under the
operation z — ~Z are the most important to Fourier transform-ion cyclotron resonange (FT-ICR) mass spectrometry
since they introduce frequency shifts at first-order in perturbation theory. Frequency shifts for all three fundamental
modes are derived for the leading second-order and fourth-order solenoidal inhomogeneities without any restrictions on
the initial conditions. The analytical frequency shifts agree very well with frequency shifts obtained from numerical
trajectory calculations using the exact classical equations of motion. The effect of the inhbmogeneity on the ion trajectory
is solved analytically. For a strong magnetic bottle field, the cyclotron motion is frequency moduiated at twice the z-

‘scillatior; frequency resulting in sidebands. However, the amplitude of these sidebands is negligibly smali for typical
inhomogeneity strengths. The effect of a magnetized ICR trap on the homogeneity of the magnetic field is studied
by analytical methods. We find that the leading magnetic bottle ficld decreases as d~?, where d is the cylindrical ion

trap diameter.

Keywords: Fourier transform ion cyclotron resonance mass spectrometry; Frequency shifts; Jon dynamics; Mugnetic
field inhomogeneities; Magnetic materials

the effects of magnetic field inhomogeneities on

the dynamics of a single ion in an ICR trap.
Neglecting the trapping potential and

assuming that By i$ homogeneous, an ion of

1. Introduction

The most important feature of a Fourier
transform-ion cyclotron resonance (FT-ICR)

" mass spectrometer [1,2] is a strong magnetic
field B, directed along the z-axis of a configura-
tion of electrodes that comprise the ICR trap.
Recently, we have studied the effects of non-
quadrupolar electrostatic trapping potentials
[3-5] and non-linear excitation electric fields
[6] on ion motion. In this work, we investigate

" Corresponding author.

mass m and charge ¢ has a fundamental
periodic motion perpendicular to B, at the
cyclotron frequency

we = qBo/m (1)

from which a mass spectrum is obtained [1].
Unfortunately, due to imperfect shimming of
the finite length solenoid magnet and/or
magnetization of the ICR trap and its support
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structure, magnetic field inhomogeneities are
present which perturb the ion’s motion
leading to position-dependent frequency
shifts and possibly modulation effects, In
most FT-ICR experiments the existence of
position-dependent frequency shifts is undesir-
able since they can degrade mass resolution,
precision and experimental reproducibility.
However, in some applications the intentional
addition of a strong inhomogeneous magnetic
field in the form of a magnetic bottle is crucial
to the success of precision measurements of t'.
g value of the electron and positron [7}, as well
as the recently proposed [8] combination of
magnetic resonance spectroscopy with FT-
ICR detection. A magnetic bottle is a par-
ticular type of magnetic field whose depen-
dence along the z-axis is quadratic
z-position. The leading inhomogeneity term
for all solenoidal (i.e. axially symmetric)
magnetic fields, which in addition possess sym-
metry under the operation z — —z, is in the
form of a magnetic bottle.

Schuch et al. [9] have derived the cyclotron
frequency shift due to the leading radial
magnetic field component of a finite length
solenoid by a quantum mechanical minimized
wave packet approach [10] and found that this
shift is negligibly small. Laukien [11], using
classical mechanics and the guiding center
approximation, has calculated the cyclotron
frequency shift (in the limit of zero magnetron
and z-axis oscillation) due to gradients of the
axial mugnetic field component, demonstrat-
ing that radial gradients are the most important
to the cyclotron frequency shift. Employing quan-
tum mechanical perturbation theory, Brown and
Gabrielse [7] have derived the first-order energy
correction due to the presence of a magnetic bot-
tle from which frequency shifts can be obtained.

Our work differs from these earlier investi-
gations in several important respects. Since
most F T-ICR experiments make measurements
on ions with large quantum numbers, the ion

motion is nearly classical. The frequency shifts .

are derived by first-order classical perturba-
tion theory without any restriction on initial
conditions {12]. Next, while previous studies
have congentrated on frequency shifts due to
only the lowest-order inhomogeneity, i.e. the
second-order magnetic bottle field, we present
analytical results for second- and fourth-order
inhomogédneities. We shall demonstrate that
for the relatively large mode-amplitudes
encountered in FT-ICR, the fourth-order
inhomogeneity gives a substantial contribu-

~tion to the frequency shifts which can be on

the order of or greater than the contribution
due to the second-order term. These analytical
frequency shifts agree well with exact numer-
ical results. The influence of the magnetic
bottle term on the ion trajectory is also derived
analytically by an approximate perturbative
method. Finally, magnetic field inhomogen-
eities due to the magnetization of the ICR
trap and its support structure are examined by
modeling the apparatus as infinitesimal rings of

uniform magnetization {7).

2. Procedire

In the quadrupole approximation {7,12-14]
which we:consider as the unperturbed motion,
the ion moves in a quadrupolar electrostatic
potential ®, whose z-axis is aligned parallel
to a constant homogeneous magnetic field
Byk. The unperturbed Hamiltonian is

| - -
Hy = %(P ~ qAg)” + q¥ (2)

where P is the canonical momentum, and A, is
the vector potential due to the unperturbed
magnetic field given by

Ay =L Bo(~yi+xj) = L pBof (3)

where the first equality on the right is the
Cartesian coordinate representation while the
second is the cylindrical coordinate represen-
tation (o = x* + %) of the unperturbed vector
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otential. The guadrupole (trapping) poten-
dal, in cylindrical coordinates (p, z,8), is

D 1
Doy 2) = th—f (Zz = ""2’!32) (4)

where V, is the applied potential on the trap
plates with ground on all others. d is the ICR
trap width and D, is a dimensionless, geome-
try-dependent  coefficient.  For example,
D,=27737 for a cubic trap and
D, = 2.8404 for a cylindrical trap whose
length and diameter are equal. A constant
term in the electrostatic potential has been
neglected in Eq. (4) since this constant
potential does mnot contribute to the
dynamics. Putting Eqs. (3) and (4) in Eq. (2).
the quadrupolar Hamiltonian, H,, can be
written in Cartesian coordinates as

Hy =5 (P2 + Ph+ PY)

+ 3 (wyo + woo) (Pry — PiX) (5)
@ L wo-uo ) g
The solution of the classical equations of
motion is well known [12,14]
x(1) = R cos¢p, + R_cosg_
y(t) = ~R, sing, — R_sing_ (6)
z(t) = A, cos¢;
‘where
¢ = wiol + By
¢ =w_ot + B- (7
. = weor + B

and R,, R. and A, are the cyclotron radius,
magnetron radius, and z-oscillation ampli-
tude, respectively, which are constants of
motion (as are their corresponding phases
B., B., and §.) for the quadrupole approx:-
ation. The unperturbed eigenfrequencies

o

are

(8)

wao = md?

The ion motion is a linear superposition of
three simple harmdnic oscillators: cyclotron
motion at frequency w,, and magnetron
motion at frequency w_p in the x—y plane,
and a z-oscillation. along the z-axis at fre-
quency w.. Under most conditions one has
the hierarchy of :frequencies w.q = w; >
w-g > w_o. For simplicity. we assume bere
that this hierarchy is valid.

Thus far, only the unperturbed motion has
been discussed. In order to solve the perturbed
problem, with a Hamiltonian H = Hy + AH,
where AH is the perturbation, it is convenient
to make a canonical transformation from
Cartesian coordinates to action-angle (J;, Q;)
given by [12,13]

0= | VT e 0, + V05 02
y =\~ Trsin Q1+ Ty sin )
p

Pe= ||~/ sin Q1 — /Tpsin Q)

b= [ Tieos + Ticos03)
P. = —\/2 s sin Oy (9)

where :
Wp = Wiy — Woo (10)
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Also, Ji, J; and J; are the action variables of
the cyclotron, magnetron and z-oscillation
modes, respectively, and Q; are the corre-
sponding angle variables. Comparing Eq. (9)
with Eq. (6) demonstrates that the action vari-
ables J; are proportional to the squares of the
mode amplitudes, @) = ¢,, O3 =¢,, and
0, =—¢_. The angle variable for the
magnetron mode, Q,, is negative of the
magnetron phase, ¢_ =w_gt + 6., in this
formulation indicating that while the cyclo-
tron and z-oscillation angle variables (¢
and Qs, respectively) rotate with the same
phase as the ion, the magnetron angle varn-
able rotates exactly opposite the mag-
netron motion. This is a consequence of
the particular choice of canonical trans-
formation employed, Eq. (9). It is possible
to derive a canonical transformation which
has (0, rotating with the same phase sense
as the magnetron motion [13]. However, the
final results for the ion’s dynamics are inde-
pendent of the transformation employed.
Using Eq. (9), the Hamiltonian H transforms
to

H= w+oJ; - w gy +wdy + AH(JJ-,QJ-)
(11)

The equations of motion evaluated from
Hamilton’s equations are

j = OAH
S BQj
L AAH
= gt =5
QE +0 a‘]i
) OAH
= -—wo+t 7,
) INH
0y =wo+ A (12)

A first-order approximation to i:q. (i2) can be
obtained by averaging over the angle vari-
ables, Q;. Equivalently, and with less compu-
tational effort, the perturbat.on Hamiltonian

AH{J;,@;) can be averaged over the angle
variables to yield (AH(J;)), which leads to
the first-order approximation

Ji=0
0, ~uw +6(AH )

1 = wih aji

. B(AH)
0= ~w_ g+ FTA

. O0AH)
QS = W+ 3J3 (k3)

where the brackets { ) denote the average over
the angle variables. These expressions are valid
provided that there are no phase terms with
commensurate frequencies in AH which lead
to internal resonances [3,12]. An internal reso-
nance can result in a significant energy
exchange between the unperturbed modes.
This assumption is valid for the magnetic
field inhomogeneities considered here pro-
vided w,g > wp > w.o. From Eq, (13), the
action variables J; are approximate constants
of motion for the perturbed problem and are
related to the mode-amplitudes by

J; = %mwai = %QBQR?{,
Jy=1muw,R: = 1gB,R? (14)
Jy = muw 4

where we have used the approximation
wp & w, in the first two equations. From Eq.
(13) the first-order frequency shifts are

_ 9(AH)
B =55
_ -3(AH)
Aw_ = - (15)
_ B(AH)
Be: =71,

The observed frequencies for the perturbed
motion are, therefore, w, =w,¢+ Aw,,
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w_=w_g+Adw_ and w.=we+ Aw, To
summarize, in order to calculate the fre-
quency shifts by Eq. (15), one must derive
AH{J;, Q;), then average AH over the angle
variables to yield (AH).

3. Results and discussion

3.1. Solenoidal magnetic field and vector
potential

Solenoidal magnetic fields are the most
important class of magnetic fields in ICR.
Most ICR magnets, and to a lesser degree,
the ICR trap and its support structure may
all be considered as approximately axially
symmetric. The non-cylindrically symmetric
components of the magnetic field average out
to zero over a period each of the ion’s cyclo-
tron, magnetron and z-oscillation modes of
motion. Only inhomogeneous axially sym-
metric fields, which in addition possess
symmetry under the operation z — —z, can
give mode-amplitude-dependent frequency
shifts which are non-vanishing at first-order
of perturbation  theory. Furthermore,
solenoidal magnetic fields greatly simplify the
analysis since in this case only one component
of the vector potential, 44 is non-zero in
cylindrical coordinates. A well-known [i5]
pedagogical example of an axially symmetric
magnetic field with- reflection symmetry under
the operation z — —z is the field of a tightly
wound, finite length solenoid (see the appen-
dix). Additional examples include a uniformly
magnetized ring with magnetization direction
parallel to the symmetry axis [7}, and most
electromagnets employed in ICR, NMR or
ESR research.

For axially symmetric magnetic fields, it is
possible to generate a power serij:s expansion
of the magnetic vector potential 4 at all points
in space from just a knowledge of the magnetic
. field along the z-axis [16]. This result provides,

in addition, a powarful method to extract the
important solenoidal part of the magnetic field
from experimental data of the on-axis mag-
netic field by fitting the on-axis field to a
power series in z.

In this work, we assume that the magnetic
field along the z-axis is adequately described
by the three-term power series

B.(p=0,z) = By + 247" + 847" + ...

(16)
where By is the dominant homogeneous part of
the magnetic field and A4, and A4 are expan-
sion coefficients of the higher-order magnetic
field [11]. The series expansion of Ay is

generated from By(0,z) by application of the
formula {16]

2 rd
() 75

1\ /p\358°B.(0,2)
+(5‘—35)(5) Sr . (1)

The first term on the right is just 4, given by
Eq. (3). With Eq. (16) substituted in Eq. (17)
one obtains

Aglp,2) = Ag+ DA (18)
where

DA = Ax(pz’ - }p")

Aglp.2) = gsz(o, 2) -

+ Ap(dp ~ 652 +35°) (19)

The perturbation A4 includes inhomogene-
ities due to both the radial and z-components
of the magnetic field. The _magnetic field
B=Bk+B,jp+Bf =< x 4 has z, radial
and azimuthal components given by

B, =~ —(pA
z pap(p 3)

= B+ Ap(22 - p')
+ Ay(82* — 24072 + 3p%)
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d4
B, = - ‘378 = —240pz + A (~16pz" +120%2)

By =10 (20)

The magnetic field component B. agrees with
the orthogonal expansion of Laukien [I1].
However, in our work no distinction between
radial and axial components of the magnetic
field is required since the vector potential auto-
matically contains both magnetic field compo-
nents. Since <7+ B = 0, a solenoidal magnetic
field must in general contain both an axial and
a radial magnetic field component.

3.2. Analytical frequency shifts

In order to evaluate the frequency shifts to
the unperturbed eigenfrequencies by first-
order perturbation theory, Eq. (15), one has
to construct the perturbation Hamiltonian
AH. The total Hamiltonian H is

T 7 2
H=—[P—q(dy + A} + qd
2m[ g{Ay I+ q® Q1)

= Hy+ AH

H, is given by Eq. (2) and the perturbation is
e
AH = —--P Ad+L AG AAd «+~--~—AA AA

(22)

The third term on the right is second-order in
AA and therefore is neglected. The magnitude
of this term is usually much smaller than the
first and second term on the right. The remain-
ing terms yield

g = - q ol 2
-mm~P~AA = —EL:[Azo(- ~—§,0 )

+ Ag(d* — 6p77 + %Pﬂ]
2
q — — _ q B{} _ —

+ /14(}(4,0224 —6pts? + 1 pﬁ)]
(23)

where L, =xP,—-yP, =J,~J) is the z-
component of angular momentum, which is a
constant of motion for both the unperturbed
as well as the perturbed ion motion. The
Hamiltonian is also a constant of motion.
The perturbation AH is transformed from
cylindrical coordinates to action-angle vari-
ables by Eqg. (9), then averaged over the
angle variables to obtain (AH). The neces-
sary averages over the angle variables of p
and 7" are evaluated using

2 ZJ-L{I +c0s2(3)

M
2
P = — [Jy 4+ 2 + 23/ T Jrcos (Q) + 7))
P
(24)
resulting in
J 373
2y Y3 4 - 3
(2 ) = Mo (z ) 2m2w30
2
(%) = === (Jy + Jo)
P
() = 4 (J34+ T3 +4000)
m; 1 2 192
8
() = = T3+ T3+ 9073 +9730,)  (25)
P

With Eq. (24) substituted in Eq. (22) and using
the approximation w, ~ w, one obtains

Wy JT 2
A —

Mg
127,03 24730,
+ A -
M m ( muly,  qBymwy

5

_48J,0Jy 4.}3 12J,J3
gBymwy  ¢*BY ' B}
24747,
RN
9°Bj ) 20
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With Eq. (26) substituted in Eq. (15), then
onverting to amplitude variables by Eq. (14)
yields the frequency shifts due to solenoidal
magnetic field inhomogeneities. The final
results are

Aw, = Azo—g;(—Ri - R+ 4}

-

+A4G%(3A§ —12RL A2 - 12R2 42
+3R* 43R + 12RLRY)
Aw_ = Am%@ +6A40~31—(2A§— R - RHR:

q [ W 2
= Awp—1— R
Aw, = Ay - (wﬂ) +

+ 644 L (i"f->(,4§ ~RL2RHRE
M\ W
(27)

The frequency shifts to all three fundamental
modes are dependent upon all three mode

mplitudes. In agreement with Laukien [11],
Aw, is inversely proportional to m/z, hence,
Aw, Jw, is m/z independent. The magnetron
and z-oscillation frequency shifts are pre-
dicted to vanish when the cyclotron radius is
zero. This effect is understood by noting that
the magnetic field perturbation is momentum
dependent and since we have assumed w,, = w,
which is valid when w g >» wo > w_y. For
this situation, nearly all of the kinetic energy
is contained in the cyclotron mode indicating
that a small cyclotron radius or large
m/z results in small frequency shifts. The
z-oscillation frequency shift expression pre-
dicts that Aw. is in general much greater
than the absolute shifts to Aw, and Aw_ by
a factor w;/wqg.

3.3. Numerical comparison

As an important test of the validity of the
.analytically derived frequency shifts Eq. (27)

and to estimate the magnitude of the effect of
various parameters involved, we have numeri-
callv integrated the exact equations ¢ motion
in amplitude-phase (R, R., A4.; ;) ivpresen-
tation {12], to obtain the exact frequency shifts
for some special cases. The perturbation force
AF used in the numerical ion trajectory calcu-
lations is given by ¢7x AB, where
AB = B— By and ¥ is the ion velocity. The
Cartesian coordinate components of AF are

AF,=q ’Uv;'AB: - 'U:Bp (:":;)]

AF, = q|v.B, G) - ’UXAB:]

AF.=g :v'\.Bp C-)) —v,8B, G)] (28)

where AB. = B, — By, and B. and B, are given
by Eq. (20). The exact equations of motion in
amplitude-phase representation [12] are
numerically integrated using the perturbation
forces (Eq. (28)). The time derivative of the
phases §; are instantaneous frequency shifts
and a slope of a straight line fit through the
points §; versus time yields the exact numeri-
cally evaluated frequency shift. Further details
of this method are presented -elsewhere
[3,4,12].

The magnetic field parameters used in the
numerical calculations are By =47 T,
Ay =-002 T m™? and Ag=-24 T m™*
v.iich are typical magnitude values for a
shimmed magnet taken from the work of
Laukien [11]. Only the magnitudes of Ay
and Ay were reported in Ref. [11]. While we
have arbitrarily chosen their values as nega-
tive, we would like to point out that the coef-
ficients A,y and A4 for an ideal finite length
solenoid magnet are less than zero (see the
appendix). We are mainly interested in typical
magnitudes of the effects involved and in
determining how well the analytical Eq. (27)
and numerical results agree. In actual
shimmed magnet systems, the signs of Ay
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Fig. |. Comparison of analytical (Eq. (27)} and exact nurnerical frequency shifts as a function of cyclotron radius when the magnetron
radius and z-oscillation amplitude are zero (R_ = A. = 0). The filled circles are cal¢ulated by numerical integration. Broken lines are

resuits for oaly the second-order terms in Eq. {27) while the solid lines are the total of second- and fourth-order contributions.
Parameters are m/z = 100 u, g = e. ¥, = 0.25V, d = 0.0508 m (cubic trap}, By = 4T T, dyp = 002 T m2and Ay =-24 Tm™

4

{a) Cyclotron frequency shift, Aw, /2 {b) magnetron [requency shift, Aw_/2x; (¢} z-oscillation frequency shift, Aw, /27,

and A4 can be either positive or negative and
should be measured in actual applications.
Other parameters used in £q. (27) and in the
numerical simulations are m/z = 100 u, g = ¢,
V, =025V and d =0.0508 m (cubic trap).
The initial conditions include R_ =0 (zero
magnetron radius) and 3;=0. For later

comparison, the unperturbed frequencies v,
v_g and vy (wjp = 2myy) are 721448.62 Hz,
9.09 Hz and 3622.30 Hz, respectively. Results
of these numerical investigations are presented
in Figs. 1 and 2 presented along with analyti-
cally derived frequency shifts.

Fig. 1 presents numerical and analytical
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Fig. 2. Comparison of analytical (Eq. {27)) and exact numerical frequency shifts as a function of cyclotron radius for . case when the
magnetron radius is zero (R_ = 0} and at the r-oscillation amplitude 4, = 0.254. All other paramters are the same as in Fig. 1.

frequency shifts for the case when the cyclo-
tron radius varies from zero to a maximum
allowed radius of R, /d =0.5 at the trap
boundary for the special case when both the
magnetron radius R_ and z-oscillation ampli-
tude A. are zero. Exact numerical results are
plotted as filled circles. The solid line corre-
sponds to the sum of the second-order (pro-
.portionai to Ay) and the fourth-order

(proportional 1o Ag) contributions to the
frequency shifts (Eq. (27)). The broken line is
the frequency shift contribution from only the
second-order contributions. Excellent agree-
ment is found between the exact numerical
and the analytical frequency shifts. One
should also observe that for the values of Ay
and Ay chosen, the fourth-order contribution
to the frequency shift in all three modes is



Ho D.W. Mitchell et al.jinternational Journal of Muss Spectrometry and fon Processes 141 (1993) 101-116

non-negligible for R, > 0.154. The fourth-
order contribution dominates the second-
order contribution for large cyclotron radii,
therefore demonstrating the importance of
including higher-order magnetic field terms in
the calculation. Estimates of the relative shifts
at R, =03d are Aw,/w.~02 ppm,
Aw,/w, = 2.6% and Aw_jw_ = 5.3%. Fora
cyclotron radius of R, = 0.45d, the relative
shifts are Aw,/w. ~2 ppm, Aw./w. = 24%
and Aw_/w_ = 49%. Evidently Jarge mode
radii introduce relatively significant frequency
shifts. In going from a cyclotron radius which
is 60% of the maximum allowed radius to 90%
of the maximum radius, the frequency shfit
magnitude increase by an order of magnitude.

When R_ = A4, = 0, the numerical calcu-
lations corroborate the prediction that the fre-
quency shifts are small when the cyclotron
radius goes to zero. However, if the magne-
tron radius or z-oscillation amplitude is non-
zero, then Eq. (27) predicts that Aw, # 0 in
general, when the cyclotron radius is zero.
These expectations are confirmed in Fig. 2(a).
Fig. 2 presents results of analytically and
numerically derived frequency shifts as a func-
tion of cyclotron radius for the case when the
magnetron radius is zero, but the z-oscillation
amplitude, 4, = 0.25d, is one-half of its maxi-
mum allowed value. As with Fig. 1, very good
agreement is observed between numerically
integrated and analytically derived frequency
shifts for all three modes. An interesting result
evident from the cyclotron frequency shifts
given in Fig. 1(a) and 2(a) is their strong
dependence on the z-oscillation amplitude.
At relatively large cyclotron radii (R, > 0.3),
the cyclotron frequency shift is negative when
A. = 0 and positive when 4. = 0.25d.

3.4. Modulation sidebands
Until now only the shifts to the unperturbed

frequencies have been considered with no
other consideration of the iou’s trajectory. A

Fourier series expansion of AH(J;, Q;) in the
angle variables Q; results in the angle-averaged
perturbation, Eq. (26), which is independent of
Q;, as well as additional terms in the pertur-
bauon Hamiltonian which are dependent on
©;. Phase terms are defined here as the g;
dependent terms in this Fourier expansxon

In this section we derive analytically in an
approxxmate manner the corrections to the
jon’s trajectory due to the phase terms whxch
have been averaged out in the frequency shift
calculations. Previous numerical simulations
{8] have demonstrated that in a strong mag-
netic bottle with Ay = 50-500 T m™2, the
Fourier transform of x(¢) results in not only
a frequency component at w,, but also side-
bands at w, + 2w, with relative amplitudes up
to 10% of the fundamental. A strong magnetic
bottle can be created, for example, by sur-
rounding the ICR trap with a ring of
ferromagnetic material [7]. In addition,
numerical simulations [8] have demonstrated
that only a single frequency at w, is observed
in the spectrum for z(r). The approach taken
here is to approximately integrate the
equations of motion and only average over the
phase variables which do not significantly influ-
ence the ion motion when w,g > wy > wop.
All phase terms may lead to modulation effects
but many give negligible contributions. The per-
turbation Hamiltonian before averaging gives
for the second-order terms (neglecting the
terms proportional to 4y)

g2 W, J?
&H—Amm(mw:u qBy 4B,
+2'Ilj3cos2Q3>

Mg

+ terms dependent on cos (Q; + O»)
andcos (Q; + @ £ 203)
(29)

Upon integration of Hamilton’s equations
derived from Eq. (29), one can show that the
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only non-negligible angle-variable-dependent
term in Eq. (29) is cos2(0;. Retaining only
the terms in the bracket in Eq. (29) yields the
equations of motion for J; and Q;.

jl :jg =0 j3 = 2Aw__J3sin2Q3
. g J

Ql = Wy +2A29;—;"2" -w-"iCOSQQg

0y = —w_

(30)

wherew, = w,y + Aw,, w_ = w_g+ Aw_and
w, = w.y-+Aw, with the frequency shifts given
by the second-order terms in Eq. (27). One
should observe from Eq. (30) that the magne-
tron motion is unaffected by the phase terms.
As seen in Eq. (29), the cos2Q; term only
couples the z-mode with the cyclotron mode.
These equations have an exact solution but are
more easily integrated by successive approxi-
mations. For a first-order approximation in
Ay, the J; and @; terms on the right-hand
sides of Eq. (30) are replaced by their unper-
turbed values (e.g. J3 = Jy = constant and
0 =~ w,t + B3 are used on the right). After
integrating over time, then converting to
amplitude-phase variables, the approximate x
and z trajectory is found by Egs. (6) and (7)
then expanding to first-order in Aj. The
z-position as a function of time is

A
z(1) = A_-(l - wz) cos (w1 + By)
2uizg

03 = w, + Duw, c0s20;

(31)

where 4, and (3 are constants of motion
determined from initial conditions. In agree-
ment with numerical simulations (8] only a
single frequency at w, is present to first-order
in Ay. The x-position of the ion, neglecting
magnetron motion, is given by

Az()(wc)
x(D 2R, coslwpt+Bpo+—|—
(0 i + [+ ot 5p o,

x A% sin (2w,t + 2%)] (32)

This result demonstrates that the cyclotron
phase is modulated by a frequency at 2w,
which is not too surprising considering that
the ion moves slowly along the z-axis com-
pared to the cyclotron motion in a magnetic
field which has even symmetry about the
z-axis. Expanding x(¢) to first-order in Ay
yields

x() =~ R, cos(w,t+ Byo)

Axp [ we\ 2
+ Ry i3, (wze)Az{cos [(ws + 2w,)e

+ Big + 2] — cos [(wy — 2w, )t

+ Bio — 2Bxl} (33)

Table |

Magnetic susceptibilities x and magnetizations M* {at an
applied magnetic field of 47 kG) for some common ICR appa-
ratus materials at temperatures T

Material T X M?
(K} CGS 107° CGS
Cu 256 -0.77" ~0.04
Al 300 1.20° 0.06
Ti 293 14.4° 0.68
Ti 90 14.1* 0.66
Mo 298 9.48" 0.44
Mo 63.8 11.5% 0.54
Mo 20.4 15.9° 8.75
MAC IR 42 ¥ 0.61
304 Stainless steel® =~ 300 13000° 611
2300 640" 30

*M = yB,, where B, = 4.7 T = 47 kG.

®From Ref, §18]; the x value is converted from the molar
susceptibilities x,, listed in Ref. [18] by using x = xm{p/MW),
where p and MW are the demsit: and molecular weight,
respectively.

‘ From Ref. [7].

9Two representative values of x for stainless steel are listed.
There is a wide range of x values in the literature for this mate-
rial.

t From Ref, [17); x(CGS = {47)” ' x(MKS).

"Erom Ref. [I9]; the relative permeability ¢ given in Ref. [19]
is converted to y by using the relation g = | + dxx.
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Therefore, three frequencies are present in the
spectrum of x(r): namely, a fundamental at w_
and sidebands atw, & 2w.. The ratio R of the
sideband amplitudes to the fundamental is

()
489 W-o
with B=4.7T, A, = 0.25d, d = 0.0508 m and
w,/ws = 199, corresponding to the same para-
meters used in the numerical simulations,
R ~ 0.002429. With Ay =0.02 T m™%, the
sidebands are negligible and R ~ 0.004%;
however with 4 = 50 T m™' the sidebands
are 10% of the fundamental amplitude. For
typical \yell-shilamned ICR  magnets,
| A2} ~ 107° T m™" the modulation sidebands
are negligibly small.

R= (34)

3.5. Magnetization of the apparatus

It is interesting to inquire into the amount of
magnetic field inhomogeneity introduced as a
result of the magnetization of the materials
comprising the ICR trap and its support struc-
ture due to the non-zero magnetic suscep-
tibility in actual materials. Since the leading
magnetic field inhomogeneity of a well-
shimmed magnet has |[Ay| ~ 10°Tm? a
relatively small valve, it is important to
determine the inhomogeneity arising from
the apparatus. Russell and co-workers {17]
have studied numerically the influence of mag-
netized ICR trap electrodes on ion injection
into the trap and ion transfer in a dual cell,
demonstrating the desirability of using low
susceptibility materials such as Cu instead of
stainless steel for the trap electrodes. We are
interested here in determining the effect of the
magnetized apparatus on A, and higher-order
coeflicients.

In Table 1, we present a list of previously
published values for magnetic susceptibility x
measured at temperature 7. In addition, the
magnetization (magnetic dipole moment per
unit volume) M is given for an applied

(a)E
7
(b) >
a2 W
'w

Fig. 3. (a) Thé geometry of a thin ring of magnetization located
in the x~y plane and displaced along the z-axis. (b) A cross-
sectior: in the x—y plane of a cylindrical ICKR trap whose length
and diameter 4re d with insulator rings of cross-sectional arca wl
attached to the trapping plates.

external field of 4.7 T. While Cu and Al are
relatively low susceptibility materials, stainless
steel has asusceptibility three or four orders of
magnitude greater.

The problem of the influence of the
apparatus on the magnetic field inhomo-
geneity is a complicated one since the per-
turbed magnetic field depends on the amount
and location of each type of material with
presumably different magnetization. Hence,
numerical rather than analytical approaches
are the most amenable and one usually secks
solutions for specific geometries. Analytical
results are possible for high symmetry geome-
tries. Kretzschmar [13] has derived analytical
frequency shifts for the case of a Penning trap
whose hyperbolic electrodes are infinitely
extended. This ideulization may be appro-
priate to experiments employing smali-
dimensional Penning traps with massive elec-
trodes; however, in most ICR experiments the
traps have thin electrodes relative to the trap
dimensions. Brown and Gabrielse [7] have
derived the formula for the magnetic field of
a thin ring of magnetized material whose
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magnetization M is uniform and parallel to Bj.
.The geometry is shown in Fig. 3(a). The ring of
material lies in the x—y plane, centered on the
z-axis but d:splaccd from the origin along the
z-axis a distance z'. The rmg has a radius p’
and cross-sectional area dp’ dz’. The magnetic
field perturbation due to a cylindrically sym-
metry apparatus ahgned with B is calculated
by integrating over all ring elements compris-
ing the apparatus. The Ay, coefficient obtained
from the general expression of Brown and
Gabrielse [7} is (in CGS units)

i 5
Ay = IZWJp' dp'dz' M(p',2) (-r—,) Py(cosd’)
(35)

As md:catcd in Fig. 3(a), the ring element 1s
located at p’, z’ in cylindrical coordmaies orr,
#'in sphencai coordinates, where r’ is the dlS-
tance to the ring from the origin and 8’ is the
polar angle. While Eq. (35) is formulated in

CGS units, the CGS unit of A4y is equal to
.the MKS unit, namely | G em™?=1Tm™
The A4, coefficient has an order of magmtude
which is smaller than Ay by a factor (')~ 2
and can usually be neglected.

As a practical example in the application of
Eq. (34), consider a cylindrical ICR trap of
length d, diameter d, and wall thickness ¢
(t < d), which is composed of a material
with uniform magnetization M. Fig. 3(b)
depicis the cross-section in the x-z plane of a
cylindrical trap of length d and width 4 along
with two insulating spacer rings (ex MACOR)
of cross-sectional area w” located on the trap
electrodes. Neglecting the spacer rings and just
integrating Eq. (34) over the cylindrical trap
yields

Ax(trap) = 12V21M — (36)

d3
Eq. (36) is a specific result for a thinned-walled
cylindrical trap whose length and diameter are
.equai. Assuming that the trap is made of Cu

placedin a 4.7 T field gives M(Cu) = ~0.04 (in
CGS units). With t =0.16 cm and d = 5 cm,
one finds from Eq. (36) that Agy(trap) =
~0.003 T m~2. Using these same parameterq
except d = 2.5¢cm, then Ay = —0.02Tm o )
the ICR trap is constructed from 304 stainless
steel, then A(trap) increases by three to
four orders of magnitude for the same
thickness ¢. The use of a stainless steel trap
may introduce (depending upon the trap
dimension d and material thickness ¢
employed) a magnetic field inhomogeneity
several orders of magnitude greater than
the intrinsic inhomogeneity of the ICR
magnet.

The influence of the support structure on
Ay should also be considered. We have
numerically integrated Eq. (35). including the
ceramic spacer rings, for the idealized situation
depicted in Fig. 3(b). Using d =5 cm and
w=1.27 cm yields A4y(spacer) = ~0.016M.
If the spacers are made of MACOR, then at
T=42K and By=47 T, MMACOR) =
+0.61 (in CGS |units) [7], yielding
Ay=-001T m~2. However, at room tem-
perature the magnitudes of the magnetic sus-
ceptibilities for MACOR and Cu are similar,
and 4,y with MACOR spacer rings would be
reduced substantially.

From this example, it is clear that the
magnetization of the apparatus can introduce
a relatively substantial effect on the magnetic
field inhomogeneity which can be larger than
the inhomogeneity of the electromagnet. If
high susceptibility materials or ferromagnetic
impurities are present close to the ICR trap,
then the homogeneity of the magnetic field
may be greatly affected. In actual experi-
ments, Eq. (35) should be integrated for the
specific geometry employed since, as pointed
out in earlier work [7,17], Ay is very sensitive
to the location as well as the composition of
the materials comprising the apparatus.

As a final example of the application of Eq.
(35), we shall determine A, as a function of
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aspect ratio ¢/d, for a cylindrical ICR trap of
length ¢ and diameter d in the limit that the wall
thickness ¢ is much smaller than ¢ and d.
Neglecting the spacer rings and just integrating
Eq. (34) over a thin walled cylindrical trap yields

487 Mt
d*(1+ 'rf")w2
x (1 = 3n— 417 + 2n°) (37)

Azg(trap) & -

where 77 = ¢/d is the trap aspect ratio.

In the limit ¢ = d (np = 1), Eq. (37) reduces
to Eq. (36). An important result from Eg. (37)
is that A»., due to magnctization of the cylind-
rical trap, can equal zero at special aspect ratio
values. In particular, Ay(trap) =0 when
¢/d =0.257 and ¢/d =2.517. For 0.257 <
c/d < 2.517, Ay/M is positive, otherwise
As/M is negative. Additional flexibility in
the choice of aspect ratio which tunes out
Ao can be gained, for example, by allowing
the trapping plates (end caps) to have a thick-
ness different from that of the cylindrical ning
electrode. In such situations it should be pos-
sible to tune out 4y, due to the magnetization
of the apparatus, for an arbitrary trap aspect
ratio by judicious choices of trapping plate and
ring electrode thicknesses.

The magnetic field inhomogeneity due to the
magnetization of the apparatus (i.e. the ICR
trap and its support structure) is critically
Jependent on both the quantity and location
of the material from the trap center. These

. characteristics are evident in Eq. (37) for the

cylindrical ICR trap as a function of trap
aspect ratio. The d~? dependence of 4, indi-
cates that the inhomogeneity decreases very
rapidly with increasing trap diameter.

4. Conclusions

Solenoidal (i.e. axially symmetric) magnetic
fields, which in addition possess symmetry
under the operation z — —z, are the most

important to ion cyclotron mass spectrometry
since they introduce frequency shifts at first-
order in perturbation theory. Analyticaly fre-
quency shifts (Eq. (27)) are derived by classical
perturbation theory without any restriction on
initial conditions, assuming w,g > wy > W.g,
which is valid for most ICR experiments.

The frequency shifts (Eq. (27)) are depen-
dent on all three fundamental mode ampl-
tudes (i.e. the cyclotron radius, magnetron
radius and the z-oscillation amplitude). The
cyclotron and magnetron frequency shifts, to
first-order, are inversely proportional to m/z
and are directly proportional to the coefficients
of the magnetic field inhomogeneity. The
z-oscillation frequency shift is, in addition,
proportional to the ratio w./w. and therefore
is in general a much larger shift than the
cyclotron and magnetron frequency shifts. The
analytical results give very good agreement with
frequency shifts obtained from numerical inte-
gration of the exact equations of motion.

The effect of the leading inhomogeneity
(i.c. the magnetic bottle term) on the ion
trajectory 's investigated analytically, assum-
ing w,y > wyg>w.g Even in a strong
magnetic bottle, the z-trajectory (Eq. (31)} is
a single frequency component at the shifted
z-oscillation frequency. The z-amplitude is
dependent on the magnetic bottle strength
(4;5) and to the cyclotron radius. The
magnetron trajectory is unaffected to first
order in Ay, other than a frequency shift. On
the other hand, the cyclotron motion
(Eq. (32)) is frequency modulated at twice the
z-oscillation frequency, resulting in a signal
(Eq. (33)) which contains sidebands at
w, £ 2w. in addition to the fundamental at
w.. The sidebands have amplitudes which are
negligible for typical FT-ICR experiments but
should be observable in experiments with
intentionally strong magnetic bottle fields.
The analytical results derived here are in agree-
ment with results from previous [8] numerical
trajectory calculations.
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The magnetization of the ICR trap and its
.upport structure. due to their being composed
of materials with non-vanishing suscep-
tibilities, introduces magnetic field inhomo-
geneities in addition to the intrinsic field
from the external magnet. The important
second-order coefficient Ay for a cylindncally
symmetric apparatus is studied using the
method of Brown and Gabrielse (7). The value
of Ay for a cylindrical ICR trap of length c,
diameter d, wall thickness t and magnetization
M, (where t < ¢, d) is given by Eq. (37). The
magnetic bottle coefficient Ay is directly pro-
portional to t and d -3 and can be tuned out at
special aspect ratios.
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Appendix: On axis magnetic field of a finite
length solenoid

Consider a tightly would solenoid of length
L, radius a, N turns per meter, current I, origin
at the center and aligned parallel to the :-axis.
For this geometry the magnetic field along the
z-axis is [15] (in MKS units) '

B.(0,2) =08
2
L. L,
o2 o2
L 2 2
\/(2—4-2) +a \/(-M—z) +a*

Assuming that z« L and a< L, then

expandirig (A1) in a Taylor series to terms up
to (a/L)* and (z/L)" yields

2 2
{ [/
B.(0, )= B, 1 -2 ]| - 24-—2°
-( ) ) i} ( Lz) 2 L4z
2 2
a a a 6
- 160 75" ~ 896 752 —} (A2)

where By = poNI is the magnetic field of an
infinitely long solenoid. The coefficients of
the magnetic field inhomogeneity are found
by comparison of Eq. (A2) with Eq. (16)
resulting in

2 2
a a
A2ﬂ = —1239 E‘i’ Aq,g = “203@2"’6"
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