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To improve the analytical usefulness of Fourier transform ion cyclotron resonance mass
spectrometry (FTICR-MS), an extensive survey of various methods for quantitation of peak
magnitudes has been undertaken using a series of simulated transient response signals with
varying signal-to-noise ratio. Both peak height (five methods) and peak area (four methods)
were explored for a range of conditions to determine the optimum methodology for
quantitation. Variables included dataset size, apodization function, damping constant, and
zero filling. Based on the results obtained, recommended procedures for optimal quantitation
include: apodization using a function appropriate for the peak height ratios observed in the
spectrum (i.e., Hanning for ratios of about 1:10, three-term Blackman-Harris for ratios of
;1:100, or Kaiser-Bessel for ratios of ;1:1000); zero filling until the peaks of interest are
represented by 10–15 points (generally obtained with one order of zero filling); and use of the
polynomial y 5 (ax2 1 bx 1 c)n and the three data points of highest intensity of the peak to
locate the peak maximum, Ymax 5 (2b2/4a 1 c)n. In this peak fitting procedure, which we
have termed the “Comisarow method,” n is 5.5, 9.5, and 12.5 for the Hanning, three-term
Blackman-Harris, and Kaiser-Bessel apodization functions, respectively. Accuracy of quanti-
tation using an optimal peak height determination is about equal to that for peak area
measurements. These recommendations were found to be valid when tested with real
FTICR-MS spectra of xenon isotopes. (J Am Soc Mass Spectrom 1998, 9, 1204–1212) © 1998
American Society for Mass Spectrometry

The technique of Fourier transform ion cyclotron
resonance mass spectrometry (FTICR-MS) has
been used quite successfully to obtain data for

qualitative studies. These have included structure elu-
cidation [1, 2], determination of fragmentation path-
ways [3, 4] and reaction mechanisms [5, 6], and exact
mass measurements [7, 8]. However, quantitative analy-
sis using FTICR has received considerably less atten-
tion, even though there are many applications that
require relative and absolute ion abundances of the
highest possible accuracy and precision. An obvious
need is the determination of unknown concentrations
using appropriate calibration curves. Another example
is the determination of ion/neutral binding energies [9],
which requires high-accuracy ion abundance measure-
ments. Reaction rate coefficient and equilibrium con-
stant measurements are also affected by the uncertainty

in measured peak magnitudes. It is thus imperative that
the determination of FTICR-MS ion abundances be
optimized for maximum accuracy and precision. The
present work reports an investigation of various factors
affecting FTICR-MS peak measurements to determine
the method that gives highest quality data with mini-
mal increase in analysis time.

Various researchers have examined the variables
involved in analyzing FTICR-MS signals with the pri-
mary goal of achieving the highest possible mass accu-
racy [10–21]. Their investigations included evaluation
of apodization functions [10–16], zero filling [17], and
various interpolation/fitting functions [18–21] to give a
more accurate assessment of the exact frequency (and
thus mass) of peak maxima. These improvements are
very important for qualitative analyses, but for quanti-
tative analyses the mass of the analyte is often known
and information on the relative or absolute ion abun-
dance is desired instead.

Liang and Marshall reported a method for determin-
ing precise relative ion abundances using a least-
squares fit of the peak to a Lorentzian lineshape [18].
The results were impressive, but with two major disad-
vantages. The method is stated to be most appropriate
when there is no peak overlap, and the data fitted in the
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paper were not apodized. However, apodization of the
time-domain response signal is commonly used in
FTICR mass spectrometry to minimize peak side lobes
and to observe small peaks that may be obscured in the
“ringing” from adjacent larger peaks. Because many
applications require quantitation of closely spaced
peaks, whose side lobes could overlap in the absence of
apodization, the Liang and Marshall technique is lim-
ited to relatively isolated peaks.

This report builds on previous studies by applying
similar methodologies to the determination of accurate
peak magnitudes. Several methods for measuring both
peak height and peak area are examined and evaluated
using simulated datasets having different numbers of
data points, signal-to-noise ratios, and damping con-
stants. The resulting optimum methodology is tested
with some experimental data obtained from FTICR
measurements of xenon isotopes.

Methodology

To make accurate comparisons between quantitation
methods, it is essential to have exact knowledge of the
true peak magnitudes. For this reason, the present
study was based on the analysis of simulated FTICR
transient responses. All signal generation and treatment
were performed using a 80486DX2-80MHz computer
and the Windowsr-based analysis package, winicr,
written in this laboratory [22]. Double-precision floating
point variables were used for all calculations.

Transient response signals representative of the de-
sired abundances were generated by adding a series of
cosine functions with appropriate amplitude factors
and with frequencies corresponding to the ion masses
of interest. Eight ion masses were chosen for the simu-
lated signals: singly charged lead ions (Pb1) at m/z
204, 206, 207, and 208, and the corresponding doubly
charged lead ions (Pb12) at m/z 102, 103, 103.5, and
104. To mimic the naturally occurring abundances of
these isotopes [23], relative amplitudes of 1.4, 24.1, 22.1,
and 52.4 were assigned to the cosine signals for a
mass-to-charge ratio equal to 204, 206, 207, and 208,
respectively, and correspondingly for m/z 102, 103,
103.5, and 104. Transient response signals were gener-
ated for four dataset sizes: 16k, 32k, 64k, and 128k data
points.

For each of the four dataset sizes, transient response
signals with three different noise levels were generated
by adding random numbers in the ranges 215 to 15,
21.5 to 1.5, and 0, respectively, to the transient response
signal, in which the extrema ranged from 1200 to 2200
prior to noise addition. Figure 1 illustrates the effect of
these three noise levels on the transformed data. The
left spectrum (Figure 1a), which corresponds to addi-
tion of random numbers between 215 and 115 to each
point of the transient response signal, is labeled “high
noise,” and represents a signal-to-noise ratio (S/N)
typical of spectra obtained by transformation of a single
transient. The middle spectrum (Figure 1b), with addi-

tion of a random number from 21.5 to 11.5 to each
point of the transient, is labeled as “moderate noise.” Its
S/N is ten times that of the left spectrum, typical of
what would be seen if 100 transients were averaged
(S/N } n1/2, where n is the number of transients [24]).
The right spectrum (Figure 1c) is labeled “no noise,”
because no noise was added to the transient response
signal. This corresponds to averaging an infinite num-
ber of scans prior to transformation. These three noise
levels were chosen to represent worst, normal, and
ideal cases, with the moderate noise level representative
of typical FTICR situations. Because of the high noise
level in the “single-scan” spectrum, the smallest peak
(1.4% abundance for m/z 102 and 204) was generally
not discernible from the noise and was not used for
quantitation. Although theoretically a more correct as-
sessment of the effect of noise on data analysis could be
obtained by using Gaussian-distributed random noise,
the approach used here adds noise to the time domain
transients in a way that adequately permits the analysis
of spectra of differing signal-to-noise levels.

In real FTICR-MS experiments, the observed signal is
damped by collisions of the ions with neutral gas
molecules. To investigate this effect, additional damped
transient response signals were generated. The simu-
lated data sets were artificially damped by multiplica-
tion by an exponential function of the form

e~2k/t!, 1 # k # T (1)

where k is the data index number, t is the damping
constant, and T is the total number of data points. A
value of 215(5 32k) was used for t, resulting in attenu-
ation of the final data point of the transient by a factor
of e(20.5), e(21), e(22), and e(24) for the 16k, 32k,
64k, and 128k data sets, respectively. Equation 1 is the
most common model currently in use for FTICR damp-
ing. New studies have suggested that this model is
appropriate for low-mass ions, such as the ones exam-

Figure 1. Examples of the three types of simulated spectra used
in this study with a 32k dataset, three-term Blackman-Harris
apodization, and no zero filling: (a) high-noise spectrum, (b)
moderate-noise spectrum, (c) no-noise spectrum. The insets show
a ;153 expansion of the relative magnitude in the region around
m/z 204 to better indicate the signal-to-noise ratio.
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ined in this study, but for high-mass molecules, such as
biopolymers, another model would be more accurate
[25].

The combination of four dataset sizes with three
noise levels and two types of signal damping gave 24
simulated transient response signals. Once these were
generated, the effect of applying various apodization
functions was investigated. Apodization involves mul-
tiplying the time-domain transient by a function in
order to minimize side lobes or “feet” in the frequency
domain spectrum [26]. These side lobes arise from the
abrupt truncation of the transient response signal at the
beginning and end of data acquisition in the time
domain. The apodization functions used in this study
minimize this problem by forcing the beginning and
ending portions of the transient response signal to
approach zero monotonically [20].

Several of the most commonly applied FTICR apo-
dization functions were studied, including the Ham-
ming, Hanning, three-term Blackman-Harris, and the
Kaiser-Bessel functions. These functions have varying
characteristics, which have been studied previously
[10–15]. The optimal function for a particular applica-
tion depends on the relative magnitudes of the peaks of
interest [10, 11]. The Hamming or Hanning function is
recommended for relative ion abundance ratios of
about 1:10, the three-term Blackman-Harris for ;1:100
ratios, and the Kaiser-Bessel for ;1:1000 ratios. The
mathematical forms of the individual functions are
shown in Table 1. The study was restricted to these four
apodization functions, because they are the most com-
mon functions used for routine analysis, and because a
previous investigation [21] of the most successful
method for quantitating peak positions concentrated on
these four apodization functions.

Various degrees of zero filling were investigated to
assess the effect on quantification. Zero filling doubles
the number of points to be transformed by adding zeros
to the end of the transient signal, effectively interpolat-
ing points in the frequency (mass) spectrum after Fou-
rier transformation. This increases the number of points
defining a peak, thus decreasing the error in peak
abundance determination. Investigations using no zero
filling, and one, two, and three orders of zero filling
were undertaken. The transient response signal for each

order of zero filling was one, two, four, or eight times
the size of the original transient, and, as a result,
progressively longer processing times were required for
the Fourier transformation. Thus, a total of 16 pretrans-
form manipulations (four apodization functions and
four different orders of zero filling) were applied to
each transient response signal. Given the 24 simulated
transient response signals, this resulted in a total of 384
transformed spectra, each with eight peaks (except for
the high-noise case, where only six were used), for a
total of 2816 peaks evaluated per quantitation method
(peak height and peak area) in this investigation.

Ion abundances were determined from measure-
ments of both peak heights and peak areas taken from
magnitude-mode spectra. Peak overlap can be problem-
atic for closely spaced peaks in magnitude-mode spec-
tra because overlapped peak values do not simply add
due to partial cancellation of their dispersion-mode
components. However, inspection of Figure 1 reveals
that the simulated peaks in this analysis are quite well
separated.

Five methods of determining peak heights were
evaluated. The apex method utilized the maximum data
point as the height of the peak. Although this is a
straightforward and simple approach, the measured
value is never the true peak height, because the true
“analog” maximum usually falls between data points
[21]. The other methods involved interpolating the peak
maximum by fitting the three data points of highest
magnitude to various functions, all described by the
equation

Y 5 ~aX2 1 bX 1 c!n (2)

where n depends on the type of interpolation, X is the
mass-to-charge ratio, and Y is the signal magnitude. For
this study, parabolic (n 5 1), Lorentzian (n 5 21),
magnitude-Lorentzian (n 5 20.5), and what will be
termed the Comisarow method (n . 1) fitting functions
were examined. The Comisarow method is based on
optimized values of n for the various apodization
functions [21]: 5.5 for Hanning apodization, 6.6 for
Hamming apodization, 9.5 for three-term Blackman-
Harris apodization, and 12.5 for Kaiser-Bessel apodiza-
tion.

To determine the maximum value of a peak, eq 2 was
differentiated, and the position of the maximum was
subsequently found by setting the derivative equal to
zero and solving for X:

0 5 n~aX2 1 bX 1 c!n21~2aX 1 b! (3)

In eq 3, n must be either 1, 21, 0.5, 5.5, 6.6, 9.5, or 12.5,
depending on the fitting function. The second term,
(aX2 1 bX 1 c)n21, is the peak maximum raised to a
power and cannot be zero. Thus, the term (2aX 1 b)
can be set equal to zero to give

Table 1. Apodization functions

Name Analytical form, 0 , t , Ta

Three-term
Blackman-Harris

0.42323 2 0.49755 cos (2pt/T) 1
0.07922 cos (4pt/T)

Kaiser-Bessel I0(3.5p{1.0 2 [(2t 2 T)/T]2}0.5)/
I0(3.5p)b

Hamming 0.54 2 0.46 cos (2pt/T)
Hanning sin2 (pt/T)

aT is the total acquisition time, and the transient response signal is
collected over times t from 0 to T.
bI0 (x) is the zero-order modified Bessel function.
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Xmax 5 2b/ 2a (4)

Substituting this expression for Xmax into eq 2 gives

Ymax 5 @a~2b/ 2a!2 1 b~2b/ 2a! 1 c#n

5 ~2b2/4a 1 c!n. (5)

To determine the value of Ymax, three simultaneous
equations containing a, b, and c were obtained using eq
2 for the three data points—(X1, Y1), (X2, Y2), and (X3,
Y3)—closest to the top of the peak. These three equa-
tions were manipulated into matrix form:

3
X1

2 X1 1

X2
2 X2 1

X3
2 X3 1

4 3
a

b

c
4 5 3

Y1
1/n

Y2
1/n

Y3
1/n

4 (6)

The values of a, b, and c were obtained by inverting the
3 3 3 matrix and multiplying both sides of the equation
by the inverse matrix to yield a 3 3 1 matrix of the
coefficients [27]. These operations are accomplished
very quickly (typically within 1 ms) on modern com-
puters. After a, b, and c were evaluated, they were
substituted into eq 5 to obtain Ymax.

Peak area was also studied as a measure of ion
abundance. It is known that in the mass domain the full
width at half maximum (FWHM) of a FTICR peak
increases with increasing mass [28]. However, peak
widths are constant in the frequency domain if the
detected ions have the same postexcitation kinetic en-
ergy and if collisional broadening processes are essen-
tially independent of mass, as expected for stable iso-
topes of the same element. Thus, frequency-domain
areas are viable measures of peak magnitudes and were
used for the determinations in this study. The areas
were calculated by four procedures, referred to as the
trapezoidal, extended trapezoidal, triangle, and inte-
grated Comisarow methods.

For the two trapezoidal methods, the initial and final
points of the peak had to be identified. This was
accomplished by systematically inspecting all points
starting with the peak maximum and proceeding in
both directions. The first data point of higher magni-
tude than the preceding one was taken as the start (or
end) of the peak, assuming that either another peak, a
side lobe, or noise was causing an increase in magni-
tude. The triangle method does not require such a
determination, and the requirements of the integrated
Comisarow method are discussed below.

The trapezoidal area was obtained by summing the
frequency difference between two successive data
points (DX) multiplied by the average peak height (Y# )
between the two points,

A 5 O
i5start

i5end21

DXi 3 Y# i

5 O
i5start

i5end21

~Xi11 2 Xi! 3
1
2

3 ~Yi11 1 Yi! (7)

where Xi is the value of the ith frequency data point, Yi

is the corresponding magnitude, and start and end
values were determined as described above.

Because the true maximum of the peak is not usually
the data point of highest magnitude, some of the total
peak area is omitted when using the usual trapezoidal
method. Therefore, an extended trapezoidal method
was developed to include the true peak maximum by
using the simple trapezoidal area plus the triangular
area with vertices at the Comisarow interpolated max-
imum (calculated according to eqs 5 and 6) and the two
adjacent data points.

The peak shape can also be approximated by an
isosceles triangle whose area is equal to the Comisarow
interpolated maximum multiplied by the FWHM. To
determine the frequency (X) values for the FWHM
evaluation, the peak height was divided by two, and on
each side of the peak the two X’s with heights spanning
this half-maximum value were found. The X values
corresponding to the exact half-maximum were deter-
mined by interpolation, and their difference was used
as the FWHM.

The final method for estimating peak area was
integration of the appropriate Comisarow fitting func-
tion [21]. This approach is justified because, as shown in
Figure 2, the functions described by Comisarow are able
to fit the entire peak, even though only the three data

Figure 2. Peak fitting by the Comisarow method for 208Pb11

using a simulated 32k dataset, no noise, three-term Blackman-
Harris apodization function, and no zero filling. The dotted line
merely connects the points that were fitted and indicates the peak
shape that would be obtained if no fitting were done. The solid
line was obtained by using the appropriate Comisarow fitting
function (see text) to fit the three points of highest magnitude on
the peak.
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points nearest the top of the peak are used to determine
the constants a, b, and c in eq 2. The first step in this
procedure is determination of the integration limits.
First, the FWHM was determined by the procedure
described in the previous paragraph. The peak start was
located by subtracting the FWHM from the X value at
the peak center and subsequently moving back toward
the center until (aX21bX1c) was positive, using the a,
b, and c values obtained above. The peak end was
determined in a similar manner. The peak area is given
by

A 5 E
Xstart

Xend

~aX2 1 bX 1 c!n dx (8)

The integral was evaluated from

E RzÎR dx 5
~2z 1 2!!

@~ z 1 1!!#2~4k!z11

z Sk~2ax 1 b!ÎR

a O
r50

z r!~r 1 1!!~4kR!r

~2r 1 2!!
1 E dx

ÎR
D

(9)

and

E dx

ÎR
5 5

1

Îa
sinh21 2ax 1 b

Îq
~a . 0!

2
1

Î 2 a
sin21 2ax 1 b

Î 2 q
~a , 0!

(10)

where R 5 (aX21bX1c), z 5 n 2 0.5, q 5 4ac 2 b2,
and k 5 4c/q [23]. To facilitate use of this solution for
all four apodization functions, the n for the Hamming
apodization was adjusted slightly from 6.6 to 6.5.

For all analyses the accuracy was expressed as the
average magnitude of the percent error (APE), given by

APE 5
1
N O

i51

N uAi 2 Atu
At

3 100% (11)

where N is the number of measurements, Ai is the ion
abundance determined for the ith measurement, and At

is the “true” value of the ion abundance, given by the
relative amplitude assigned to the cosine function used
in the simulation of transient response signals.

Results and Discussion

Quantitation Based on Peak Height

A summary of the average magnitude of the percent
error for quantitation by peak height measurement is

shown in Figure 3, which is a bar graph of APEs for
various combinations of noise level, zero-filling order,
and peak height evaluation method. Each bar was
calculated from 48 measured versus “true” compari-
sons for the high-noise case (six peaks in spectra from
transient response signals of four different lengths, for
both damped and undamped cases) and 64 compari-
sons for the moderate-noise and no-noise cases (eight
peaks in spectra from transient response signals of four
different lengths, for both damped and undamped
cases). A Hanning apodization function was used for all
data shown in this figure. Results for other apodization
functions are discussed below.

As expected, there is a marked decrease in the
average magnitude of the percent error as the noise
level is decreased. The lowest APE is about 2.2 for the
high-noise set, 1.2 for the moderate-noise set, and 0.01
for the no-noise set. As the number of scans increases,
the noise decreases, resulting in less uncertainty in the
peak height measurements. Thus, peak quantitation
requires a tradeoff between the desired accuracy level
versus the additional time required to make repetitive
measurements. An increase in the signal-to-noise ratio
by a factor of 10 requires a 100-fold increase in the
number of transients.

The accuracy also increases with the level of zero
filling because of the improved peak definition with a
greater number of points (in this example, 6, 11, 22, and
45 points for zero, one, two, and three orders of zero
filling, respectively). The improvement is most signifi-
cant for the first order of zero filling. As shown in
Figure 3, there is a sharp reduction in APE for all noise
levels and all peak height evaluation methods with a
change from no zero filling to one filling order. Only
slight improvements are seen with two and three or-
ders. This is the expected result, because the first zero
filling effectively combines the information contained in
the real and imaginary parts of the Fourier transform

Figure 3. Bar graph showing the APE (eq 11) for simulated
datasets using peak height as a method for quantitation of ion
abundances for various fitting functions, noise levels, and orders
of zero filling. The arrows on some bars indicate that they are
offscale and have the value above the arrow.
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[29], while subsequent orders of zero filling do not
contribute any information. Thus, these results indicate
that one zero filling is optimum, corresponding in this
case to about 10–15 points per peak. Although higher
orders of zero filling give slightly better accuracy, the
time required for Fourier transformation increases with
each order.

Finally, examination of Figure 3 indicates that the
Comisarow method gives the lowest APE for the con-
ditions used in this study, and this is especially true
when there is no zero filling. As the number of points
spanning a peak increases, other methods become com-
parable to the one based on Comisarow’s equation.
However, with only one order of zero filling, the
Comisarow method performs as well as any method at
any zero-fill level. The Comisarow method is also
relatively insensitive to zero-fill order compared to the
other methods; the APE for two orders of zero filling is
0.997 of that for one order, and the APE for three orders
of zero filling is 0.9999 of that for two orders. Thus, in
this study the Comisarow method was either statisti-
cally the same as or superior to every other method of
peak height determination. This result is to be expected,
because the Comisarow fitting functions have been
shown [21] to be the best for determining the center
position of the peak along the frequency (or mass) axis,
and thus should be best for determining the peak
magnitude at the true peak frequency. The Lorentzian
and magnitude Lorentzian methods do not perform as
well, because they are intended for use with unapo-
dized spectra. They have been included for complete-
ness and in order to test their applicability to apodized
spectra.

The data represented in Figure 3 were obtained
using the Hanning apodization function, but the Ham-
ming, three-term Blackman-Harris, and Kaiser-Bessel
apodization functions all produced results with trends
similar to those shown in Figure 3. The Hanning
function was used for Figure 3 because the other
apodization functions did not provide APE’s quite as
low. For example, using the Comisarow method and
one order of zero filling, the three-term Blackman-
Harris and Kaiser-Bessel functions yielded APE’s
greater by factors of 1.04 and 1.06 compared to the APE
obtained using Hanning apodization. This is to be
expected because the relative magnitudes of the mea-
sured peaks in this study are approximately 1:2, 1:2, and
1:37. As stated earlier, the Hanning apodization is
recommended for peak magnitude ratios of 1:10, while
the optimum ratio range is 1:100 and 1:1000 for the
three-term Blackman-Harris and the Kaiser-Bessel func-
tions, respectively. Because the magnitude ratio in this
study was closest to 1:10, the Hanning apodization
provided the best results, with the three-term Black-
man-Harris apodization being the next best. Finally, the
Hamming function, with APE’s larger than those
shown in Figure 3 by as much as a factor of 1.40, is
clearly a poor choice. This function leaves large side
lobes that interfere with peak height determination for

closely spaced peaks, especially the Pb12 peaks at 103,
103.5, and 104 m/z.

Because the most accurate results were obtained
when using Hanning apodization, one order of zero
filling, and the Comisarow method for peak height
determination, these parameters were used to investi-
gate the effects of dataset size and exponential signal
damping. Results of these investigations are summa-
rized in Table 2. For undamped transients, the APE
decreases monotonically with increasing dataset size.
This is expected, because, as the number of data points
in an undamped transient increases, the signal-to-noise
ratio of the transformed spectrum increases, and there-
fore the three points used in the interpolation have a
smaller fraction of noise interfering with accurate de-
terminations. Interpretation of the data for the damped
transients is somewhat less straightforward, because
both the dataset size and the T/t value in eq 1 are
changing. Previous studies [19–21] have shown that the
interpolation accuracy decreases with increasing T/t.
This explains the general upward trend in APE between
datasets of 16k and 64k points. However, the present
results indicate that the increased signal to noise, with
the resulting increased accuracy of the interpolations,
overrides the increased error from greater T/t ratios for
the larger datasets. These results are in agreement with
earlier theoretical noise studies that show the same
trend in maxima for damped samples [30].

Quantitation Based on Peak Area

The bar graph for quantitation results based on peak
areas is shown in Figure 4. As in Figure 3, a Hanning

Table 2. Effect of dataset size and signal damping on average
magnitude of the percent error (APE)

Signal damping Dataset size APE

Quantitation by peak heighta

Undamped 16k 1.62

32k 1.28

64k 1.22

128k 0.38

Damped 16k 0.24

32k 1.32

64k 1.75

128k 1.11

Quantitation by peak areab

Undamped 16k 1.9/1.9
32k 2.0/2.1
64k 1.8/1.9

128k 0.29/0.34

Damped 16k 0.34/0.57

32k 1.1/1.2
64k 2.2/2.6

128k 1.3/1.4

aHanning apodization, moderate-noise level, one order of zero filling,
Comisarow method.
bHanning apodization, moderate-noise level, one order of zero filling,
Comisarow/triangle method.
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apodization function was used for all data shown.
Given that the triangle and integrated Comisarow
methods use the peak height as one factor in the area
determination, similar quantitation results for the two
methods are expected, especially since peak areas and
interpolated peak heights are both evaluated from the
three data points of highest magnitude. The trapezoidal
methods include more points, although the largest
contribution is still made by the three data points of
highest magnitude.

As with peak height, a decrease in the noise level
results in improved accuracy. Considering the areas
obtained by the integrated Comisarow method, the
APE’s decrease from ;2.6% for the high-noise data to
;1.6% for the moderate-noise data to ;0.4% for tran-
sients generated with no noise. These APE’s are all
slightly higher than those obtained using the Comisa-
row interpolated peak height for quantitation, probably
because of uncertainties in locating the peak start and
end for use in eq 8. The data in Figure 4 also indicate
that one order of zero filling gives the best compromise
of quantitation accuracy and transformation time.

Perhaps the most significant features in Figure 4 are
the APE trends for the peak area evaluation methods.
Considering first the two trapezoidal methods, it is
clear that they give almost identical results. The triangle
and integrated Comisarow methods yield similar re-
sults for high- and moderate-noise cases, except with-
out zero filling, for which the integrated Comisarow
method is considerably better at all noise levels. As
noted above, the noise level in typical FTICR-MS exper-
iments is similar to that in the moderate-noise spectra.
Thus, the results shown in Figure 4 suggest that the
integrated Comisarow method is superior for calculat-
ing peak areas under most conditions.

As is the case with peak heights, the Hanning
apodization function gives the lowest APE’s for peak
area determination, with APE’s from the three-term

Blackman-Harris, Kaiser-Bessel, and Hamming apo-
dizations higher by factors of 1.015, 1.019, and 1.616,
respectively, when using the integrated Comisarow
approach with one order of zero filling. It is apparent
that the Hamming apodization function is not desirable
for these methods of quantitation, and that one of the
other three apodization functions should be used, de-
pending on the relative peak heights in the spectrum
[11].

The effects of dataset size and signal damping (Table
2) are similar to those for peak height measurements.
Except for the anomalous initial point, there is a general
decrease in APE for the undamped signal due to
signal-to-noise improvement. The APE’s from damped
transients initially increase and then decrease because
of the competing factors of increasing T/t, which leads
to greater error, and increasing dataset size, which
improves the signal-to-noise ratio and decreases the
error.

Systematic Errors

As shown in eq 11, the APE is calculated using the
magnitude of the error for each measurement without
regard to direction. It is also important to consider
whether certain combinations of parameters yield sys-
tematically high or low results. The data (not shown)
were examined for systematic trends, and none were
found.

The validity of this or any other data analysis meth-
odology depends ultimately on the quality of the exper-
imental data. Many factors can affect this quality, such
as unequal excitation of different mass ions when using
chirp or “impulse” excitation [31], z-axis ejection of ions
[32], and peak coalescence [33] (where ions of high
abundance can completely suppress signals from
nearby ions of low abundance).

Relative Ion Abundance Measurements

The considerations for magnitude ratio measurements
are analogous to those for absolute magnitudes. One
important concern is the accuracy of ratios for widely
spaced peaks compared to those in a narrow mass-to-
charge ratio range. To consider data in a narrow mass-
to-charge ratio range, magnitude ratios for the isotopes
of Pb1, and likewise for the isotopes of Pb12, were
calculated using peak heights. To mimic a wide mass-
to-charge ratio range, Pb12/Pb1 magnitude ratios
were calculated for each isotope. Ratios of peaks in
the narrow mass-to-charge ratio range were about 5%
more accurate than ratios of peaks in the wide mass
range. The overlap of the side lobes is different for the
two sets of peaks, which could contribute to the
poorer performance for the wide mass-to-charge ratio
range.

Figure 4. Bar graph showing the APE (eq 11) for simulated
datasets using peak area as a method for quantitation of ion
abundances for various fitting functions, noise levels, and orders
of zero filling. The arrows on some bars indicate that they are
offscale and have the value above the arrow.
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Testing of Methodology Using FTICR Mass
Spectra of Xenon Isotopes

The quantitation methods discussed above, determined
from the analysis of simulated data, were tested using
actual FTICR mass spectra of xenon isotopes [34]. The
data were obtained with an instrument composed of a
laboratory-built vacuum system and prototype 2-tesla
superconducting magnet [35], and an IonSpec (IonSpec,
Irvine, CA) data station.

The nine naturally occurring isotopes of xenon and
their abundances are 124Xe (0.10%), 126Xe(0.09%),
128Xe(1.91%), 129Xe(26.4%), 130Xe(4.1%), 131Xe(21.2%),
132Xe(26.9%), 134Xe(10.4%), and 136Xe(8.9%). Only six of
these nine isotopes were investigated in this study. The
124Xe and 126Xe peaks were not discernible above the
noise in the spectra used for quantitation, and the 130Xe
peak exhibited a split appearance, perhaps due to poor
homogeneity of the prototype 2-tesla magnet. Thirty
spectra were analyzed, with each spectrum obtained by
summing 100 transient response signals prior to Fourier
transformation. The 30 spectra were background cor-
rected, apodized using the Hanning apodization func-
tion (appropriate given the dynamic range of the peaks
involved), modified by various degrees of zero filling
(0–3), and transformed.

The 30 spectra were divided into three groups of 10,
and the average peak heights and average areas for
each set of 10 were evaluated. The first set was used as
a quantitation standard to remove the effects of uneven
excitation in the heterodyne detection mode. A correc-
tion factor was obtained by dividing the true abun-
dance by the respective measured peak abundance,
determined using either peak height or area, depending
on the subsequent analysis. Peak heights and areas
from the second and third sets of measurements were
treated as “unknowns” and multiplied by the appropri-
ate correction factor before further data analysis. This
approach is similar to the use of relative sensitivity
factors in various types of mass spectrometry, including
glow-discharge mass spectrometry [36]. Percent errors
were then obtained for each “unknown” peak as com-
pared to the natural abundance, and the absolute values
of these errors were averaged. This treatment produced
data comparable to the simulated data used earlier in
this article.

Figure 5 is a bar graph of the APE’s for the five peak
height determination methods with various orders of
zero filling for the two “unknown” xenon isotope
spectra. The data are very similar to those in Figure 3.
With no zero filling, both the parabolic and Comisarow
interpolation methods provide much lower APE’s than
the Lorentzian, magnitude-Lorentzian, and apex meth-
ods. As shown earlier, with increasing orders of zero
filling, the error decreases, but the improvements are
meager after the first zero filling. In the case of these
“real” data, as opposed to the simulated data discussed
earlier, parabolic interpolation gives slightly better re-
sults than Comisarow interpolation. This may be attrib-

uted to slight variations in peak shapes due to poor
homogeneity of the prototype magnet.

The results using actual mass spectra suggest that,
with no zero filling, either the parabolic or Comisarow
methods may be used. With one order of zero filling, all
interpolation schemes give approximately the same
results. Considering the results of the studies of both
the simulated and real data, use of the Comisarow
interpolated peak height with one order of zero filling is
a good general approach to determining ion abun-
dances from peak height measurements.

Figure 6 is a bar graph analogous to Figure 4 for the
two “unknown” mass spectra. The results are similar to
those obtained for the simulated datasets, with the
integrated Comisarow method being superior in all
situations. Thus, the data from actual mass spectra
corroborate the recommendation based on simulated
data that the integrated Comisarow method should be
used for quantitating ion abundances by peak area

Figure 5. Bar graph showing the APE (eq 11) for xenon spectra
using peak height as a method for quantitation of ion abundances
for various fitting functions and orders of zero filling. The arrows
on some bars indicate that they are offscale and have the value
above the arrow.

Figure 6. Bar graph showing the APE (eq 11) for xenon spectra
using peak area as a method for quantitation of ion abundances
for various fitting functions, noise levels, and orders of zero filling.
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measurements. Figures 5 and 6 show that with one
order of zero filling and the Comisarow evaluation
method, the APE’s for peak height measurements are
about equal to the APE’s for peak areas. Thus, quanti-
tation by either type of measurement should produce
acceptable results.

Conclusions

Peaks in a series of 384 simulated FTICR-MS spectra,
chosen to mimic a range of “real-world” situations,
were analyzed to determine optimum conditions for
quantitation of peak magnitudes. Combinations of
three noise levels, four dataset sizes, four levels of zero
filling, and four apodization methods were utilized,
and peak magnitudes were evaluated by both peak
height (five methods) and peak area (four methods)
measurements.

Based on the results, several suggestions for the best
quantitation method can be made. Starting with the
transient signal, either the Hanning, three-term Black-
man-Harris, or Kaiser-Bessel apodization function
should be used, depending on the relative magnitudes
of the peaks to be analyzed. The time-domain transient
should then be zero filled until there are between 10 and
15 points spanning each peak of interest. For peak
height measurements, the Comisarow interpolation
method, which utilizes a fitting function specific to the
apodization type [21], should be used. If peak area
determinations are desired, the integrated Comisarow
method, described in this paper, produces the most
accurate results. This recommended methodology was
confirmed when applied to actual FTICR mass spectra
of xenon isotopes.
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