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Image charge forces inside conducting boundaries
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The common description of the electrostatic for€€x)=—qV ¢(x), provides an incomplete
description of the force on the charget a pointx when the charge itself induces additional fields,

e.g., image charges, polarizations, etc. The equation may be corrected through the introduction of a
“pseudopotential” formalism. Exploration of some of the elementary properties of the
pseudopotential demonstrates its essential simplicity. This simplicity allows it to be incorporated
directly into dynamics calculations. We explicitly evaluate the pseudopotential in a number of
simple but important cases including the sphere, parallel plates, the rectangular prism, and the
cylindrical box. The pseudopotential formalism may be expanded to include extended charge
distributions; in this latter form we are able to directly apply the results to experimental
measurements. @001 American Institute of Physic§DOI: 10.1063/1.138301]6

I. INTRODUCTION We begin our development in Sec. Il by reviewing some
of the more important definitions and restrictions of our
The force on a charged particle due to the charges ifreatment. We then move on to demonstrate the inadequacy
induces on nearby conducting surfaces is a factor in manyf the usual electric force equation and show that the defi-
scientific measurements’ The effects of these forces are ciency can be remedied through the introduction of a
particularly important where high precision is soufltbn-  «pseudopotential.” Once found, the pseudopotential can then
ducting surfaces are very clo3e great deal of charge is pe used just like any other for determining forces and accel-

used: or a region is otherwise field frefelt has been recog- eration. Section Il continues with a review of various tech-
nized for some time that measurements of ion maSS'tOniqueS for treating image Charge_

charge ratios made in Penning trap based mass spectrometers our results are presented in Sec. Ill. We start with a

can be affected by induced surface charg&SUntil now, _generic limiting form to which all subsequent analysis can be
general techniques for quantifying image charge effects ifeferred. Consideration of the familiar spherical shell and
these instruments have not been available. An earlier attemphrallel plate problems shows that both of these problems
to treat the cylinder problem was made by Xiaetgal.,S but  can readily be cast in terms of our generic form. In the last
a subtle math error rendered their results incorrect, as wWgyg parts of Sec. Ill we treat rectangular and cylindrical
describe below. An important advance was made in a receloxes. The derivations are rather lengthy and require the use
article by Fine and Driscdliwhich addressed the lowest or- of Green's functions. However, when the solutions are cast
der solutions to this prOblem for infinite Cylindrical geom- into the generic form, we once again find surprisingiy Simpie
etry, including finite charge length effects. Here, we generalpehavior.
ize those results considerably. We find that the standard Understanding the effects of image charge in Penning
deSCI’iption of el?ct.rostatic force giVe-n in most teXtS, i.e.,trap mass SpectrometerS, particuiariy inICRs is a major mo-
F(x)=—aV¢(x) is inadequate when image charge effectstivation for this work. In Sec. IV we show how image charge
are included. _ . . affects theEXB motion in these environments. In Sec. IV B,
In the sections below, we present calculations of imag&ve show how our results can be extended to ion clouds of
charge forces for charges inside closed and infinitely exfinite dimension. The results of this development are then
tended geometries: the parallel plate, the sphere, the rectagpplied to drift mode data from our own ICR instrument.
gular box, and the cylindrical box; the latter two geometriesA|though the drift mode is well known to the broad ICR
are widely employed in ion cyclotron resonance mass speGommunity, its importance is not widely appreciated. Many
trometer(ICR) cells. Recently, cylindrical trap designs have effects that reduce data quality have their origin in the drift

also become popular for precision measurem@tt3his ad-  mode. This is a point that we return to at the end of Sec. IV,
vance has reduced the need for detailed treatment of hyper-

boloidal trap geometries, without compromising the quality;; pEFINITIONS AND METHODS
of the electrostatic trapping fieldSThe classical hyperbolic

trap electrode geometry requires a careful numerical treat- | N€ term “image charge” is itself a misnomer, and this
ment and lies outside the scope of this article. can be confusing. The term comes from the “method of im-

ages” which is but one, albeit powerful, technique for solv-
) i Hol o d ing the general class of problems associated with the inter-
Current address: Dynamics Technology, Inc., 21311 Hawthorne Bivd. ; ;
SUit6 300, Torrance. CA 808035610, action of charges and conductdfsPhysically, when a
YAuthor to whom correspondence should be addressed; electronic maiﬁharg? or charged body approaches a Conducior held at some
se.barlow@pnl.gov potential, sayV, charge flows from the potential source to
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the conductor. This charge arranges itself on the surface afannot exert a force on itself. This leaves the potential of the
the conductor in just such a way that the conductor’s potenimage charge, which evaluated along thaxis is just

tial everywhere returns t¥ as required by Gauss’s law. The B 1

surface charge distributiom gives rise to an additional field ®,(x,0,0)= g 2
at the source particle that affects its motion. “Induced 4meg X+ Xo

Charge Distribution” would probably be a better term, but asfor x>0. Two courses of action present themselves for find-

in so many other cases historical naming seems likely tong thex component of the force: tak&b, /9x and evaluate

prevail into the future. Since the location of the charged parat x=x,, or evaluate®, at x=x, and taked/dx, of the

ticle determines the surface charge distribution, many otheresult. The results differ by a factor of two

wise general techniques for finding solutions of Laplace’s

equation cannot be used because one cannot subtract the par- ‘E' __a9 i (3)

ticle’s Coulomb potential in any convenient way. 28 X=%q 4mey 4Xy'
We are focussing on the effects on the real charge pro-

duced by its own image. Effects of the image charge on othe®"

charges can be found directly from the Green’s function and 5[q)||x:xo] q 1

are not considered further. Also, we are concerned here only =

with the nonrelativistic limit, i.e., we assume that all veloci-

ties are small compared to the speed of light and that affhe force can be found directly from Coulomb’s Law using

wavelengths are large compared to the scale lengths of thfie image chardé

experimental apparatus. Relativistic effects have been dis- 2

cussed by Brown and Gabrielend Dehmelet al' Last, e 4 1

energy and distance scales that require quantum mechanical 4mey 4Xg

treatment also lie outside our scope here. ~so at least in this case, we have a choice of formulas for the
The calculation of potentials and forces on charges in theyce in terms of the potential

presence of conductors is addressed in various ways in the

numerous texts on electrostatics, but no text that we are D, %

4

&XO _4’7760 2_)(%

X, ®)

aware of presents a convenient summary of the available F(xo)= qW ‘ex ©
techniques. Further difficulties arise in applying any one of 0

these techniques to the range of problems we wish to ad?r

dress. We have found it easiest to use different methods for —q APlxx,]

different parts of our calculations. In this section we explain ()= — R (7)

the techniques we will use. 2 IXo

A. Image charge pseudopotential The first choice seems like the natural one, but it requires us

) ) ) ~ to keep a function of two position coordinatés and Xg).
The measurable physical variable associated with inThe second choice contains an unfamiliar factor of 1/2, but
duced surface charge is the force it produces on the poifke force is reconstructed from a simple function of one po-

charge. We would like to express this force as the gradient ofjtion coordinate X,). This is the useful form, which we will
a function of the point charge’s position. There is a subtlety,ow derive more generally.

involved in this potential function that is best illustrated by a
simple example using the method of images.

1. Motivating example 2. General derivation

If a point charge of strengtly is at a position X,y,z)
=(Xp,0,0), (xo>0) with a grounded conductor in the-z
plane, we know from the method of imad@shat the elec-
trostatic potential fox>>0 can be expressed as the sum of
the potentials from the point charge and a fictitious image F=-qV¢— 1qV®, (8
charge of strength-q located at X,y,z) = (—Xq,0,0)

Motivated by this example, we will show that a general
expression for the force on a point chaigén the presence
of both fixed charges and conductors at fixed potentials is

where ¢ is the ordinary electrostatic potential due to the

1 fixed charges and potentials, adel is the image charge
d(X,y,2)= Ameo\ J[(x—xg)2ty2+ )] pseudopotential, the potential due to charges induced by the
point charge, evaluated at the point charge coordinate.
1 From the definition of the electrostatic potential the
%2t y2+ )] (1) work required to bring a point charggin to positionx from

infinity (where¢=0) while holding the charges producirfy

for x>0. This is the potential that determines the force on arfixed in place isW=q¢(x). The force on the particle is the
infinitesimal point charge, which is to say a point chargenegative of the gradient with respect to its position coordi-
whose own induced surface charges produce negligibleate of thetotal system energynder the circumstances con-
forces. Can we use it to find the force on the chag@eWe  sidered. If the charges producinffx) are indeed fixed and
must first drop the potential produced by the charge, since ithere are no other energy terms involving the position of the
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point charge, then the force 5= —qV ¢. This is the famil-  tors of a specified geometry. Cleary contains®, and a

iar result for an infinitesimal test charge, but it is a specialgreat deal more. If the method of images can be applied to a

case. It is not the definition ap. problem, then a simple Green’s function can also be found
When a charge moves toward a conducting surface, thand will give the same results. More generally, determining

induced surface charges must bunch together, against thdlte Green’s function is difficult or impossible, but for cylin-

mutual repulsion, to maintain an equipotential. This adds &lers and rectangular boxes infinite series expansiors far

term to the total electrostatic energy of the system that acts tearious different forms are known, and we will use them to

reduce the attractive force felt by the point charge, by exactlfind @ for these geometries.

a factor of two. This is easily derived from the well-known

expression for the total electrostatic enefgxcluding self- 1. Evaluation of G at x=Xx'

energy of n discrete charges The Green’s function can be written as
We 1 é o 9 G ) 1 H ' 12
24 q;P;, 9 (X,X)—m+ (%,x"), (12

where ®@; is the potential at charge; due to all the other where H is the contribution from the induced surface
charges? If j=1 denotes the point charge, and the otherscharges, sab(x)=gH(x,x). In simple cases amenable to
are the charges induced on a grounded conductor,dhéa  solution by the method of image§ will clearly separate
zero for allj#1 (the induced charggsegardless of the po- into these pieces, but unfortunately this is not true of the
sition of the point charge, and the total electrostatic energy igfinite series forms forG for cylinders and boxes. One
straightforward solution is to use a computer to estinhte

W= 3q®, (10 from the limit asx approaches’:
where® =®, is the potential at the point charge due to the _ 1
induced surface charges. The force on the point charge is ®(x)=q lim G(X,X')—m : (13
thus ! 0

F=-3qVO, (1) 2. Direct evaluation of H (x,x")

where the gradient is taken with respect to the position of the  In some cases, the functidh(x,x") is known or can be
point charge. If the conductor is at some potential other thafiound explicitly, and allows the direct evaluation &f(x).
ground, then we must add the familiar terrqV ¢ to this  This technique was employed by Fine and Driscdr the
thereby recovering Eq8). infinite cylinder geometry. They showed how to reduce the
We refer tod(x) as the image charge pseudopotential,well-known solution of an infinitely long charged column in
to emphasize its differences from ordinary potentials. Unlikean infinite cylinder(see Davidsod,Sec. 5.4 to a finite one
#(x), ®(x) is not simply a solution of Laplace’s or Pois- and finally to a single point charge. We do not use this ap-
son’s equation, because its source téthe induced charge Proach here, but it does provide a useful check.
distribution is a complicated functional ok, the point
charge location. Furthed® (x) is only meaningful at the par- 3. Gradient of G

ticular location of the charge. As we describe beldwx) is Following Smythe'? the force on the charge can be

proportional to the nonsingular part Gf(x,x"), evaluated at  found by evaluatings atx’ =x and taking the gradient
x=X". Thus,®(x) may be extracted from a family of solu-

— _n2
tions to Laplace’s equation, but is not itself a solution. F=-0"VG(xx)/2, (14)
the idea being that the self-field term must vanish, since it
B. Method of images cannot result in a force on the chargBlote how the factor

. . of one half appears hejerlhis is a rather problematic equa-
I_n cases where the f:lassmal method of images can jon, sinceG is evaluated at its pole, and it can only be
a_pphed, as in the prece,dlng exampl_e, the for(_:e can b_e founéjonsidered shorthand for a more proper limiting procedure.
directly from Coulomb’s law, treatmg the discrete Image Still, since the individual terms of the series expressions for
charges as real. The pseudopotential can be found in tr@ for cylinders and boxes are finite atx’, the equation

same w?y.f_lndq??cs. ”IB. ?ni i C,lwgduse thﬁ ”.‘etf“’d Ofmay be naively applied term by term. There is no reason to
IMages 1o Tind® Tor a point charge Inside a spherical Con- o, o that the resulting series expression Fowill con-

ducting _shell and for a point charge betwegn infinite paralleﬁerge, but it often does.
conducting plates. The example of a point charge near a
single infinite plate will be shown to be a limiting form near

4. Force on the conductors
any smooth surface.

The charge distributiorr on a surfaceS can be found
from the Green’s function as follows:

The electrostatic Green’s functig®(x,x’) is the poten- 0==€qVG(X.X') dalxcs, (15
tial that an infinitesimal test charge would feelxatlue to a  where the gradient is taken with respectxtoThe force on
unit point charge ax’, in the presence of grounded conduc- the point charge due t@ can be calculated from Coulomb’s

C. Green’s function techniques
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law, but it is easier to find the total force on the conductorswith C,=0 for oddn, due to symmetry. The divergent term
which from Newton’s third law is the negative of the force by itself hasC,,=1 for all evenn. The results we obtain for
on the chargé® The surface charge creates a pressure specific geometries can all be expressed in this form, with
o different values for the coefficients.
p=o°/2¢, (16

directed out of the conductor. The force on the charge is thug. Spherical shell

A single image charge can be used to represent the po-
tential inside a spherical conducting shell of radigslue to
surface chargésinduced by a point charge at a radius
<ry. The image charge lies along the same ray from the
origin as the point charge, at a radius=r§/r, and has

F=— f o?dal2e,. (17
S

This is the technique used by Xiamd al®

chargeq’ = —qry/r. The pseudopotential can be written as
D. Numerical computation 1
b=- a - (23
If the Green’s function is not known, useful results can Arregrg 1—T2°

be obtained from numerical solutions to Laplace’s equation\'/vherer_=r/r For small disolacements from the center of
From Eq. (12) it is clear thatH(x,x’) is a solution to o P

Laplace’s equation that satisfies the unusual boundary con gbe sphere, it is useful to expredsas a power series in
tion

o= (L4124 478+ -4). (24)
1 47TEOrO

(18)

ry —
H(xx") Note that this result, which is exact, is identical to the limit-

ing form obtained in the previous section.

 Ameg|x—x'|

for xe S. Computation ofH(x,x") for a particular value of
x' yields the pseudopotential at that point

) =gH(X".X"). (19 The pseudopotential of a chargebetween two infinite
This technique can be used, for instance, to study hyperbagrounded parallel plates can be found by the method of im-
loidal geometries, but as stated above, lies outside the scopgyes. This provides a useful check for the more difficult cyl-
of the present treatment. inder and rectangular box calculations, of which it is a lim-

iting case. Let the plates be parallel to tkg plane and
located atz==*z,. If the charge hag-coordinatez’, an

C. Parallel plates

. RESULTS image charge-q at z=2z,—2z" will produce the required
' o boundary condition at the=z, plate, and another charge
A. Generic limiting form —q atz=—2z,—2' is needed for the other plate. Unfortu-

As a smooth region of a conductor is approached closely?ater each of these image charges affects the potential at
the pseudopotential approaches that of an infinite flat platghe other plate and must be countered by its own image
From the method of imagesp— —q/4me,2d as d—0, charge, producing an infinite sequence of image charges, all
where d is the distance to the surface. Thusgf is the Of the same magnitude, but with alternating sign. Fhe
distance to a conductor along tieaxis of a rectilinear co- IMmage charges are spaced evenly alongzthasis, separated
ordinate system and the surface is perpendicular tg thés ~ BY 4Zo. The g image charges are also evenly spaced with

where they intersect, separation 4, with one missing from the pattern atz'.
The potential az’ due to all these image charges is, after
q 1 some rearrangement
d—— (20

dmento 2(1— &) 2

q . z
_ b=- In(2)+ >, — : :
as ¢=¢lé,— 1. If the geometry is symmetric ig, we can 4775020{ 1 2= D) - 1)°7- 7]

account for the limiting behaviors at both walls with the (25
form where we have now substitutedfor z’. The terms of the
1 series can be regrouped as
R q €01 &2 20 q z)*m
T€So 1— =— —
_ ¢ CI) dmeozoinzy oM Zo) ’ 9
asé— * 1. The complete solution fob along the¢ axis will h
be the sum of this divergent term and a finite term. Expressew ere
as a power series expansion about the origin, it will have the -
= —oomT1 >0.
form C2m JZO (2] +1)2m+l7 m 0 (27)
___" ~n Evaluating the first few terms, we findc,=In(2), C,
= > Coé, (22 0= (%)
4megéon=0 ~1.0518,C,4~1.0045, andCg~1.0005. Again, this is very
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close to the generic form, with the biggest differences foundrhe coordinaté&. is the lesser o andZ’, andZ. is the

in the lowest order terms of the expansion. In the more comgreater. The coordinates in ER8) can of course be per-
plex cases of rectangular and cylindrical boxes considerethuted at will. The image forces can be readily evaluated
below, these values represent limiting cases and can be usading Eq.(14). This is particularly true for the axis, where

to verify the correctness of our derivationf3his is the last the sinh functions assure rapid numerical convergence except

case we consider whef@, is determined. very near the walls. Having once fourd,, forces in the
orthogonal directionsg andy can be written down immedi-

D. Rectangular box ately simply by permuting the variables. We find

Now consider a rectangular box with boundariesxat o 2

=+X,, Yy=*Yo, andz=+z,. The mathematical notation F=> E > [sw{ (X+1) ]

is simplified by scaling the coordinates by these dimensions, eoxoyo -tm=

i.e., X=x/xq, Y=ylyo andZ=2z/z,. The shape can be de- ma 25inH 2k, Z]

scribed by two “aspect ratios,'a=zy/x, and B=2z,/y,. X{sw{—(y ) m (30

One form for the Green’s function of the interior of the box
is Equation (30) can be integrated to give the parts of the
pseudopotential that contain all terms of the forms:

G(X,y.2) = %o 2" x"zZ" yPz" andxMyPz". Only terms of the fornmx™,x™yP,
€0XoYo andyP remain. Using the above definitions farand 8, we
Xi i N K;pn(1+%-) Jsint{ k(1 —%-)] rewrite k;,, and define two new functions,,, andh,,
=1 m= Kim sinh(2k
=1 m=1 im SIN(2K)) klm:g\/m' (31)
M Al
X4 Si 7(x+1) Si ?(7(,+1)
Oim= B\/a2|2+(2m 1), (32
N o (1) [sin = (3741 (28)
X si 5 (y+1)|sin 5 (y ) and
where him=—B2(21 - 1) 2+ (2m—1)° 33
im=5VBA2 - 1%+ (2m—1)2. (33
2 2\ 172
klm:W_Zo(|_2+ m_2> (29 We can then write the image charge pseudopotential explic-
2 \xg Yo itly as
|7 2 mar 2
w o |Sin—{1+%}|| |sinl——{1+V}|| [cosh2k,z)—1]
037 APPRE -
X,¥,2)= .
e PP K SN (2K1))
P -
w w |Sin 7{1+x} [cosh29;mY)—1] = = [cosh2h, %)~ 1]
m
+ _ : 34
PP BGim SN (2017)) “& 2 ah i (2] 39
|
neglecting an additive constant. The three components on the q * *
right hand side of Eq(34) may be identified as those con- ®(X,y,2)=~ 7—— tZo ZO ZO Cot 2u 25 @, BIXFYHZ,
taining all of thez terms, the remaining terms and the pure 0m0tmBumn s= (35)

X respectively. Equatio34) may be used directly to evalu-
ate all of the image charge electric fields on a particle in a s=t=u=0, is excluded.
rectangular box, however, except for the"‘terms conver-

gence is relatively poor. We find better performance by simBy symmetry only even powers of the coordinates survive.
ply using the first term and permuting the variables whilejn the sample calculations below, we consider the square
keeping the definitions o& and 8. Following our general prism, wherea= 3. We will give explicit forms for the C's
approach, each term in the sums can be expanded in a Taylipr this case. Note that since E@®4) does not give the con-
series and rearranged to get stant term, we cannot fin@, o from the methods here.
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1. The square prism

The effects of image charge on a particle in a square prism can be directly applied to observations made in standard ICR
cells. For the square prismg=p8 and the equations simplify somewhat. We defibg=x,=y, so that z,
= aDy. We can now use Eq34) to evaluate the C’s by expanding the various functions in power series. The results may be
summarized as

25 2s+1 * o

([2m—1]2+[2I—1]%)s~ 12

Coon(@)=4————2 > , (36)
Do (29)! =1 m=1 sinh(my[2m—1]2+[2] - 1]%)
Cas00(@)=Coxola)=Cooxlat), (37
25+2t —2s * *® ([Zm_1]2+|2a2)s—(1/2)(_1)|+t|2t
C =2 38
2s21,00@) (25)1(20)! 21 mE:1 e DEi P (38
sin
o
Cztozs(a’) (_1)tﬂ_25+2ta2$+1§ % (_1)|([2m_1]2+|2)s—(1/2)|2t
0, _ 39
Coaazla) (291(20)!  F1m-1 sinh(r[2m—1]2+12a) %9
and
B (_1)t+u+1,n,25+2t+2ua25+2t+2u+1 * o (_1)m+l(m2+|2)s—(1/2)mZU|2t
Conauasla)= (@s)1(20)!(20) D N N 28 (40

We are now in a position to explore the consequences of varying the trap lengths. Figure 1 shows plots for the low order terms
of Egs.(36)—(40). Based on the discussion above on simpler systems, the qualitative, asymptotic behavior of these equations
is as expected. Namely, as—0, the system becomes like the parallel plate case, with thezo@rens converging near unity

and all of the rest going to zero. In a similar vein,@&s>«, the axial terms disappear and the transverse terms tend toward
constant values. Table | lists the asymptotic limits of the C’s from the figures. It is interesting to note that many of the nonlinear
terms have maxima in the vicinity af=1, the cubic box, which is close to the aspect ratio most commonly employed in ICR
work.

E. Cylindrical shell

In comparison to the rectangular box, the calculations for a cylindrical (betuding the infinitely long onepresent
greater difficulties. We note that the following mathematics are rather complicated; however, in the end we find that the
expressions fofb in powers ofr andz are readily understood.

One expression for the Green'’s function of the interior of a cylinder of ragjuand length 2, is

G(p.¢.z.p".¢".7")

€EmCOgM(p— ") ]I n(

i mndms1(imn)

jm,npj‘]m(j m,n?) Sinf[j m,n(a+?<)]smhtj m,n(a_?>)]
sinh(2j ha)

: (41)

whereen=2—6n0; 90 0=1, andd, =0 otherwise;j,  is
the nth zero of the Bessel functioh,(x); and a=zy/pg is
the “aspect ratio” of the cylinder. The andz coordinates

are scaled by and their origin is the center of the cylinder.

The coordinatez_ is the lesser oz andz’, andz. is the
greater. Thez component of the force on a chargecan be
found by applyind? Eq. (14) to G

q2 S m(jmn_) Sinr(zjmn_j
27T€0p3 m=0 n=1 m\]z +1(Jm n) SanZJm na)
(42)

Z:

conductor using Eq17). Since the radial force is produced
entirely by charges induced on the cylindrical wall, it is
easier to use an alternate form for the Green’s function

G(p.¢.2p",¢".2')

1 S S m(Zz+1
= Sreczo o 2 {fmwimw ¢ )]sn(TW
ey

The same approach for the radial force yields a divergent
series, as mentioned above. Instead we find the force on thehere
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; 1.0 - (C) The crossed “radial” terms—
° c =C | powers ofx andy. (D) The crossed
=4 (2,0,2)+(0,2,2) “radial” and “axial” terms—powers
£ 05 == Cr20 . of x and/ory andz.
=4
= C
= 0.0 1 " 1
o] 2 4
Aspect ratio o(zp/xg) = B(zo/Yo)
T — T T T ]
" 1.5 Pl
E - / \ c J
N S s VA — Ceea
g \ ——- €(2,04=C(0,2,4)
e = C402=C04,2)
= 05 .
k=]
[} -
X
= — o
2 0.0 \\ ! . A
N -t _
3 ~ - . . P
0 2 4
Aspect ratio o(zg/xg) = B(zo/Yo)
TABLE I. Asymptotic limits of image charge potential coefficients for
~ Square Box.
nmp<
I'm 2 nw nap— Cstos2u a—0 a—0
T.(p.p )=—F—|1nl =—1|K a=p Parallel a=1 Square
nipP.p ( I’MT) M2a) ™ 2 2o/%0=201Yo plate Cube tube
ol =—
2a Coos 1.0518 0.6692 0
- Coo04 1.0045 1.1850 0
K nw | nNmp< (44) Coos 1.0005 1.1047 0
m 20f m 2 ! sz()'o: CO,Z,O 0 0.6692 1.0518
Cu00=Cos0 0 1.1850 1.0045
Cs.00=Cos.0 0 1.0721 1.0005
Cu02=Coz.2 0 0.9690 0
|, andK,, are modified(or “hyperbolic”) Bessel functions, gzwf 2024 8 8-1822 8
and the tilde indicates scaling lay rather than by,. Using 4'052204’0'2 0 0.9590 -
the identity | (U)K (u) —Kn(u)l/(u)=—1/u, we find the Caa0=Cazo 0 0.4085 0.269 36
surface charge on the cylindrical wall is Ca22 0 1.0147 0
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( % 2j
X
_ . - R (X):XZ(m+l) [ —
q nm(Z+1) m Shj+m+1
= <
0= Gmreaza iy 2 | EmCOIM(G— @) ]sin ——— | 1
) Z rmr D krm =Rk 9P
nwp
nm(z' +1)] Im 2 In spite of its cumbersome appearan®,(x) is well be-
X sin > o : (45  haved and readily evaluated. We can now write down
Squaring this double sum and integrating it to find the total " cosl‘( 2jo i)
radial force on the cylinder is somewhat involved. The iden-q)( 7)=— 2w )
tity PO dmegze| T Joalda(ion)) sinM2aj0,)

jzw cog x)cog mxjcog nx)dx )
0

n S nm
»  Rny 2—Zop sin Z_Z()[ZO+Z]

T for m=0 and n=1 EZ 2
7= orm=1 andn=0 Tm=0n=1 nlmH(gw)l (;W
| m/2 for m—n=+1 and n,m>0 (46) “
. (53)
0 otherwise
is useful. The radial force on the charge from ELy?) is or
P <
o mmEo 2 S|n2[n7-r(z+ 1)/2] O (52)= - q oo - C.()Sf(zio,.nahz) .
_ _ , 4menzy n=1 Jo,n{Jl(JO,n)}zsmr(zaj O,n)
Im(NTDI2)1 11 (NTPI2) 4
| m(NT2a)| 1 (N7 2a) “7)
o . . nm_ o[ nm ~ 2

This is the same form obtained by Xiarg al® except that 5 = Rm 5, P ]S 7[14—2]
they omitted then=0 terms, which are the most important. = D> @

FromF, andF, we can find®, except for an unknown Tm=0n=1 al (”_W)I na
additive constant, in two different ways M 2a) ™ 2a

®(p,2) 2[“ F (_Fdﬂ F (_O)dﬂ] (48) o

puz = = p:z Z + ’pY p . . e H
q ‘ g Expressions for the coefficients of E¢pO) can be obtained
2 from Eq.(53) by substituting the Taylor series expansions for
q)(;),’z):—a[U F,(0Z,)dz|+ jFp(T)-~Z)dT> ] cosh(3on2/po) and sinfn{1+2z)/2z5), and rearranging

terms. The first term on the right hand side of E5R) [or
(49) Eqg. (54)], gives us all of the pure axial terms, while the
where care must be exercised to keep the normalizations cosecond gives all of the remaining terms excepting only the
rect. The term-by-term integration &1, is straightforward, constant termCg ().
but that ofF, is not. The treatment of either form requires

about the same amount of labor. Since we are interested in 2 2 s ion
the power series expansion &f o.m(@,po) = M\ po) &4 31 om 2 SINN2) gner)
(55)
— —2m—2n
A P E 2 Crn(@)p (50 o
we find that the second of these two forms is the more con- (2a)2m*+1 jgfg

venient. Evaluation of the integral over the radial forceCoom(@,2p)= : 7 ai : . (56)
’ 2m)! J 2
means integrating (2m)! 7=1 [31(jon) 7 SN2 g pa)

27, nar nar nar For the actual numerical values in a particular instance, i.e.,
m<2—20p> f m<2—20p> m+1(2 p)dp, (51 given pg a}ndzo elthgr expression will do. Ev_aluat|on pf the
purely axial terms is most readily accomplished using Eqg.
which cannot be done in terms of well known functions. The(56), because of its convergence properties foraalAs ex-
integral can be done analytically by first expanding bothpected, ase—0, i.e., holdingz, constant and letting
Bessel functions in a power series and integrating term by-, theCg »,’'s are identical to those of the infinite parallel
term, to get plate system discussed above. Use of (5§) by contrast is
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T T T TABLE Il. Asymptotic limits of image charge coefficients for cylindrical
- .o E box.
AN Tl
. —— C(0’4) - a—0 a—0
5 c Parallel 4th Order long
N = ++%(0,6) | Cstos plate exp’l. trap a=1 tube
g ) Cos 1.0518 0.7755 0.5880 0
o Cou 1.0045 1.1669 1.1845 0
i Cos 1.0005 1.0180 1.1246 0
* A Cao 0 0.7534 0.8792 1.0027
S Cao 0 1.1243 1.0884 1.0009
4 Ceo 0 1.0572 1.0020 1.0003
Aspect Ratio o(zy/ rg) Cao 0 —0.9157 —1.0309 0
Cy» 0 —0.3470 —0.4359 0
Coa 0 0.1822 0.1884 0
L, ’ ' ' i eAgrees with results of Fine and DriscoRef. 3, Eq.(32)].
I'x
1.0F 1 Som
=) 1 —C n
O (2,0) =5, (58)
NN = —=C4,0)
= 0.5},
) 1 - -:C(6,0) Then
N - o
1 3
! 8 Coo=— 2 TrEVTES (59
2,0 ’
0.0 Mt ——t a =1 lo(&n)11(&n)
® .3
Aspect Ratio a(zy/ ro) - 1 > £n(312(&n) T 10n) 60
407160 1= 1o(£n) 1 (€n)la(£0)
T Y T T
T - RN 1 Ceozig f?[ 10 + °
& 0.0 f\l . "~ 576an=1 lo(En)11(€n)  11(En12(En)
Q .
g —=C(2,2) 1 SR ERTIERY AR )], (62)
S] —— 2 3
505 C@a,2) e
S '\ ~+:C(2,4) ... > (=", 62)
L - 4 2275 T (7 (7
|., C 2 7=1 lo(&n)l11(&n)
-1.0 ! 1 L 1 w
i : : S D% (63
Aspect Ratio o(zy/ ro) 247 2480 1o(E (L)
FIG. 2. Plots of the the first six terms of the power series expansion of theand
image charge pseudopotential for a cylindrical box as functions of the aspect "
ratio. (A) The pure axial terms—powers a only. (B) The pure radial a (—1)"315(L) +1o(Ln)]
terms—powers of only. (C) The crossed radial and axial terms—powers of C4’2=— 2 (64)
r andz. 325=1 |0(§n)|1(§n)|2(§n)

The limiting values listed in Table Il are again in line
with our generic discussion above. These coefficient terms
are shown plotted in Figs.(B) and ZC). The experimental
data shown below were gathered with a cylindrical ion trap
wherezy=1.66 cm and ,=2.00cm, sox=0.8314 andD,
=0.02357.

equivalent to holdingpy constant while varying,, which
clearly must diverge ag—0. Figure ZA) shows plots of
Co2, Co4, andCyp.

The coefficients for purely radial displacements follow
directly from our definition ofR,,, above; however no simple
general form as in Eq¢55) or (56) emerges. Specific forms |y EXAMPLES FROM PENNING TRAPS
for the low order terms, including cross terms, can be found

however. It is convenient to define two variables As we stated in the introduction, a major motivation for

undertaking this study was to quantify the image effects on
ion motion in Penning ion traps. A general treatment of the

= M (57) Penning trap lies well outside the scope of this article. How-
2a ever, a brief introduction will serve to illustrate how image
charge can affect experimental observation. Much more de-
and tailed treatments can be found in References 3, 16, and 17.
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lons of a single charge sign are stored in a Penning trap 1 gN
through the combined effects of static electric and magnetic @ -(Image Field~ g{m] C20,0- (77)
fields. For simplicity, we take the magnetic field to be uni- 00
form and parallel to the axis Using the value ofC,,o from Table | and takingD,
=4 cm, the shift in the observed magnetron frequency due to
image chargesf, image: 1S
The magnetic field provides radial confinement of ions, § mage=1.92110) "°N/BHz, (72)
while the electric field provides axial confinement. The elec- e
tric field itself is produced by biassing the trap electrodesVhereN is the number of elementary charges and the mag-
with appropriate voltages. In addition to the radial confine-netic field B is in Teslas. This is a small effect, but can be
ment by the magnetic field, there is always some radial eledadily detected in some cases.
tric field whose force is directed outwards. The result is an
EXB drift in the ® direction. For an ion of chargg and  B- Estimating effects due to axial extension
massM in a circular orbit of radius .., one can show that Up to here we have considered the effects of image

its orbital frequency is given by charge on compact, i.e., point-like ion clouds. With certain
restrictions and simplifications, approximations for extended
Q 4 | F(r) . ; : .
wi=7{1Fy\[1- ——|— , (66)  ion clouds can be found. This development is necessary in
2 MQ r r=r, order to couple the forgoing developments to the experimen-
. . tal observations presented below. When many ions are simul-
whereQ)=qB/M is the cyclotron frequency arfé(r) is the : ; g
) e g ; taneously stored in a Penning trap, they rapidly approach a
radial force. The “” sign in Eq. (66) is the high frequency y g trap y rapicly app
motion that we call the ion cyclotron resonance frequenc
while the “—" sign refers to the generally much low&XB

thermal equilibrium state through ion—ion collisioffs.’
Yhis equilibrium can be characterized by ion number, total
drift frequency. This latter motion is generally known as the
“magnetron” or “diocotron” frequency, depending on

canonical angular momentum and energpr tem-
whether the dominant source of the radial force is due to th

perature.®’ (To simplify the discussion, we will restrict
ourselves to ion clouds of a single charge to mass jakio.

trapping fields or image charge, respectively. It is easy t

show from Eq.(66) that

B=B,2 (65)

fon cloud at thermal equilibrium rotates rigidly about its own
Bxis® with a frequencyw, that is determined by trapping
fields and its own space chargémage charge plays only a
w0, =0—w_. (67) secondary role herg.
) . ) For cases of practical interest in mass spectroscopy, we
SinceQ)~w,>w_, w_ reduces to the simple approxima- may further assume that the ion cloud’s radiysand length
tion 2z, are small compared to the trap’s radius and length, re-
E(r)/r spectively. Under these conditions, we find experimentally
~—g (68  that a resonance excitation near either or w_ causes the
entire ion cloud to orbit the trap’s center like a single body.
Thus, to first orderw_ is independent of both ion mass and We interpret this motion as a translating equilibrium stéte.
charge. Further, it is clear from E¢(67) that if  _ is under- It is not unusual to observe these “modes” for tens of thou-
stood, the ICR frequencies are also described. From the lirsands to millions of periods. In the language of nonneutral
earity inherent in the theory of electric and magnetic fieldsplasma physics these are the undamped upper and lower dio-
E(r) may be evaluated as a simple sum over all of its sourceotron modes.Experimentally these modese damped, but
terms. This in turn allows us to describe the various contrithe damping is due primarily to ion-neutral collisions and to
butions to the drift frequency in the approximation of Eq. nonlinearities in the trapping fielsee discussion below
(68) Further, no experimental evidence has emergedkfer0
) . associated with these modes. That is, no drift modes where
w-~w_(Trap fieldy+o_(Image Field+w_(Othey. ions at differing axial positions orbit with different ampli-
(69 ;
tudes or frequencies have been reported to our knowledge.
A. The cubical ICR cell Thus we feel justified in treating the excited ion cloud as a

At this point we can ask the question: Under normalrlgld body that moves in a mean field.

operating conditions, in a standard instrument, how large are In }f?é_zlig\other S|mpllf|cat|on,_we ad(_)pt the COI(.j fluid
model, where the ion cloud is described approximately

image charge effects likely to be? For the sake of concrete- _ . .
ness, we consider a cubical ICR cell of dimensigy, eby a spheroid of -un|form charge densityA C(.)Id lon cloud
can be characterized by three parameters, its half-length

= zo=D,, and whose z axis is aligned parallel to a uniform its radiusr, and its charge density, or total chargeN
tic fieldB=Byz. F Eqgs.(35), (36), (68 d(69 P 0 . '
magnetic fie 02. From Eqs(35), (36), (68), and(69) (Another model that treats the cloud as a uniform rod of

w_

i q 1 0Pimagd r,0,2) finite length has been employed elsewHgr& similar model
w-(Image Field~perm) -5 or was also used and explained in detail by Fine and Driggoll.
r:'E%) With the above restrictions, we can average the radial forces

due to nonlinear terms along the length of the cloud. The
or keeping only the linear terms of the pseudopotential average values af? andz* over the spheroidal cloud are
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2y — 0 572 N 1620 : — 4
<Z >—0.5Zp (73 i T ﬁ T 0 &
4 T
and o 1610 h =
s -
(2= 05! (74) 3 1600 q":; )z |l 2
e 1
These are the values we use later to describe magnetron fre- L 4599 A :' | --80 §
quencies and their shifts when nonlinear effects become ob- § Bk A F
® 1
servable. % 580 A +-100 §
g 1570 M T ST R
C. The “fourth order” cylindrical ICR cell 0 400 800 1200 1600
In order to investigate the role that trapping fields play in Time (Seconds)
ICR mass spectrometry, we constructed a cylindrical Penning _ 1620 — e 40
trap with an aspect ratioo(=z5/r,) of 0.8314. The electro- i ﬁ | o
static potential of the trap near the center is > 1610} ﬁ 2
2 ! ! 1A —4-60 ®
0936/1 , |\ 0.227 g 1600} ﬁ A | B
(DTrap(raZ)%VT r—z EI’ —Z _r_6 g % .‘. ! H A 7]
0 0 1590 I,' N 1A 18 5
s L PSR- LAY =
5 45 15 o [ kol h Qo
X| 28— —r4z%+ —r?z*— 75 7 g 1580FA - af KB &
16 8 2 - (1 % rg A ‘AA g 24100 é’
. . . . . 8 157 T e et T W
whereVy is the applied trapping potential amg=2 cm is = 00 400 800 1200 1600

the trap radius. By design, the fourth order terms in the trap-
ping potential are missing. The coefficient of the quadratic
term is our best experimental determination; and to Withingig. 3. Evolution of electron magnetron signal in 4th order ICR o®ll.
our ability to measure, the fourth order term is zero. Themeasured magnetron frequeney, measured magnetron signal amplitude,
coefficient of the sixth order term is the result of a Compu_connecting lines are for clarity. Periodic increases of magnetron signal are
tation. The image charge pseudopotential for the trap i§Jue to a weak external dipole excitation. Empty trap magnetron frequency.
found by evaluating the results of Section E. EG$)—(62)

for «=0.8314, and assuminy ions of chargeg

Time (Seconds)

had approximately 10electrons? The zero of time was

2 2 4
D, odl,2)~— gN |0.753 + 0.77¢" 1124 taken at the point that the ionization electron beam was
maget dmegly| r§ re ro switched off.
2 0 " In both cases we note that magnetron motion appeared
0.916°zc 1.16% . .
_ . + —|. (76) spontaneously during the production of the electron cloud.
I'o I'o Currently, we have no explanation for the appearance of

With the help of Eq(68) we may write magnetron motion during the production of electron clouds,

but we do regularly observe the effect. Subsequent excitation
A | 0Predriz) 1 0PimagdT,2) 77 of magnetron motion was produced by a resonant chirp. The
T MQr ar 2 ar '

signal data indicate that no particles were lost during the
Substitution from Eqs(75) and(76) and making use for the course of the measurement and that the two electron clouds
mean values found above gives

w_

were essentially identical. We also note that the damping of
the magnetron motion is very similar in all cases. Other ex-
periments showed that at low background pressure, the
damping rate of magnetron motion is roughly proportional to
electron number, not neutral density. This may be an addi-

Vr 4 2.2
fo~ E(372.42— 0.001 058~ +0.006 3$_zp

4

—0.0059%;) tional manifestation of anharmonic effects that couple center
N (78 of mass motion to internal motion of individual particfés.
+§(21.57+ 0.1612 — 0.032&§)Hz. In comparing both the signal and frequency data of Fi¢gs. 3

and 3b) we see that the repeated magnetron excitations had

Equation(78) is written in “convenience” units, i. e,_ and little or no perceptible effects on the gross features of the
z, are in millimeters;N is in millions; while Vr andB re-  time evolution. Figure @) illustrates another mysterious
main in Sl units. feature; namely, the magnetron motion never completely dis-

Figure 3 shows the experimental time evolution of mag-appeared, although its amplitude became small. This may be
netron motion for two large electron clouds stored in thisthe result of low amplitude noise in the system or may point
trap. HereV;=30.00V andB=7.0469 T. The electron cloud to something more fundamental.
was produced by electron bombardment of background gas Turning our attention now to the frequency data, we see
and required 40 s with a 100 eV, 10 nA beam. We estimate number of interesting effectéThe dotted line in Figs. &)
that the background pressure was2(10) °Torr. Since and 3b) is the expected empty trap magnetron frequéncy.
each ionization event will produce two electrons, the cloudFirst, we note that the gross features of the frequency evolu-
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the trap. After allowing for thermalization, all of the ions are
excited by a dipole rf field transverse Bowhose frequency

is swept through the resonant ICR frequencies. lons at each
different mass remain clustered together and gyrate about the
center of the trap at their respective ICR frequencies. This
motion induces image currents on “receiver” antennas and
the ions are detected. Typically, these signals are digitized
and passed through a fast Fourier transform to produce a
power spectrum. The power spectrum is converted to a mass
spectrum with the help of a variant of E¢66). Both the
excitation and detection antennas are segments of the trap
electrodes that lie parallel to the magnetic field.

Mass spectrometers are evaluated by several parameters,
FIG. 4. Expected magnetron frequency shift in an experimental Penningncluding mass resolution, dynamic range, sensitivity, mass
trap as a function of iqn cloud length and magnetf@ncyclotron radius in precision and accuracy, reproducibility, and “throughput.”
oylindrical box trap witha~0.8314,rp=2 om, B=7.0469T, and 10el- (This latter term refers to how many measurements and re-
ementary charges. Dashed contours denote values less than 0. y ]

measurements can be made per unit tjms. with any type
of spectroscopy, ultimate performance in any one of these

tion are unaffected by the magnetron excitations. The initiafréas generally occurs at the expense of others. A highly
magnetron frequencies are nearly identical, as is the rate §killed operator can generally find conditions that give satis-
frequency evolution. Second, we see that with magnetrof@ctory results for a particular problem. In the identification
excitation, the frequency jumps up by a small amount and@nd characterization of large biomolecules, the tremendous
then stays nearly constant during the major portion of thénass resolution as well as its high throughput make ICR an
damping, after which it starts to rise again. attractive tool. The trick is to accurately relate the observed
The general trends of the frequency evolution can bdrequencies to masses.
explained by radial transport. That is, the electron cloud has ~According to Eq.(67) the difference between the ob-
some initial length determined by the trapping potential andserved ICR frequencyw, and the actual cyclotron fre-
the cloud’s parameters of radius and ion number. Electronquency,() is just the drift frequenc§ Thus, amplitude and
neutral collisions or other sources of torque drive radialion abundance dependent frequency shifts can be largely in-
transport. As the cloud expands radially, it shortens axiallyterpreted in terms of their effects on the drift frequency. As
The effects of ion cloud length and magnetron amplitude ar&ve have shown, image charge gives rise to both linear and
illustrated in Fig. 4. Figure 4 is a contour plot of Eg8) in  nonlinear terms in the radial electric fields. Further, when the
which we have taketN=10 million and set the zero to the trapping fields also contain nonlinearities, they must be in-
empty trap frequency. If the ion cloud had an initial half cluded with the image charge effects in the interpretation of
length, z,~6 mm, the magnetron frequency would shift data.
about 10 Hz below the empty trap value. As it shortens due
to radial transport, the magnetron frequency grows. Magne-
tron excitation also causes the frequency to increase. During
the damping of the magnetron motion, the competing effects
of radial expansion and loss of magnetron amplitude keely. CONCLUSIONS
the frequency nearly constant. We do not, however, have
sufficient data to show whether the very constant frequency We have shown how the forces on charges that arise
during damping observed here is more than just coincidencdtom charge distributions that they induce may be cast in the
Figure 4 itself is illustrative, not quantitative. The spe- form of a potential that we call the “image charge pseudo-
cific contours, their separation and shape are sensitive to tHotential.” The “pseudopotential” concept allows us to
exact value ofN. Currently, we have no good way to get readily compute the forces on a charged partforecompact
more than a factor of two estimate of this number. Interestgroup of chargeslocated interior to a variety of electrode
ingly, when we try to fitz, to the time evolution of the geometries, e.g., in ion traps. By using the pseudopotential
frequency data within this uncertainty df, we find thatz, formalism we can bring these effects into our calculations on
decreases approximately linearly with time with a rate ofan equal footing with other forces. Thus, estimates of fre-
1-6(10) ®mm/s depending on the assumed valudNoWe  quency shifts and perturbations of orbits in Penning traps can
also find that the magnetron excitations in Fig. 3 were 1-1.%e made in rather straightforward ways. Further, our formal-
mm. The data are inadequate to make any more precise asm allows us to see an essential unity that applies to all
signments. cases. Namely, when the image charge pseudopotential is
expressed in the standard form of E2pR), the coefficients of
the various powers of the coordinates all vary between
~ 1. Interestingly, the most complicated fields are those
In chemical applications of ICR mass spectrometry, ionsassociated with length to width ratiga’s) between 1 and 2,
of various mass to charge ratios are simultaneously stored mwhich is just the range where most trap designs fall.

m-

N

lon Cloud Length [zp(mm)]
B

o

2 4 I 6
Magnetron Radius [ry, (mm)]

o

D. Implications for ICR mass spectrometry
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