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Image charge forces inside conducting boundaries
Mark D. Tinklea) and S. E. Barlowb)
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P.O. Box 999 (K8-88), Richland, Washington 99352
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The common description of the electrostatic force,F(x)52q¹f(x), provides an incomplete
description of the force on the chargeq at a pointx when the charge itself induces additional fields,
e.g., image charges, polarizations, etc. The equation may be corrected through the introduction of a
‘‘pseudopotential’’ formalism. Exploration of some of the elementary properties of the
pseudopotential demonstrates its essential simplicity. This simplicity allows it to be incorporated
directly into dynamics calculations. We explicitly evaluate the pseudopotential in a number of
simple but important cases including the sphere, parallel plates, the rectangular prism, and the
cylindrical box. The pseudopotential formalism may be expanded to include extended charge
distributions; in this latter form we are able to directly apply the results to experimental
measurements. ©2001 American Institute of Physics.@DOI: 10.1063/1.1383016#
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I. INTRODUCTION

The force on a charged particle due to the charge
induces on nearby conducting surfaces is a factor in m
scientific measurements,1–7 The effects of these forces ar
particularly important where high precision is sought;4 con-
ducting surfaces are very close;5 a great deal of charge i
used;2 or a region is otherwise field free.7 It has been recog
nized for some time that measurements of ion mass
charge ratios made in Penning trap based mass spectrom
can be affected by induced surface charges.1,4,6 Until now,
general techniques for quantifying image charge effects
these instruments have not been available. An earlier atte
to treat the cylinder problem was made by Xianget al.,8 but
a subtle math error rendered their results incorrect, as
describe below. An important advance was made in a re
article by Fine and Driscoll7 which addressed the lowest o
der solutions to this problem for infinite cylindrical geom
etry, including finite charge length effects. Here, we gene
ize those results considerably. We find that the stand
description of electrostatic force given in most texts, i.
F(x)52q¹f(x) is inadequate when image charge effe
are included.

In the sections below, we present calculations of ima
charge forces for charges inside closed and infinitely
tended geometries: the parallel plate, the sphere, the re
gular box, and the cylindrical box; the latter two geometr
are widely employed in ion cyclotron resonance mass sp
trometer~ICR! cells. Recently, cylindrical trap designs ha
also become popular for precision measurements.9,10This ad-
vance has reduced the need for detailed treatment of hy
boloidal trap geometries, without compromising the qua
of the electrostatic trapping fields.11 The classical hyperbolic
trap electrode geometry requires a careful numerical tr
ment and lies outside the scope of this article.

a!Current address: Dynamics Technology, Inc., 21311 Hawthorne Bl
Suite 300, Torrance, CA 90503-5610.

b!Author to whom correspondence should be addressed; electronic
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We begin our development in Sec. II by reviewing som
of the more important definitions and restrictions of o
treatment. We then move on to demonstrate the inadequ
of the usual electric force equation and show that the d
ciency can be remedied through the introduction of
‘‘pseudopotential.’’ Once found, the pseudopotential can th
be used just like any other for determining forces and ac
eration. Section II continues with a review of various tec
niques for treating image charge.

Our results are presented in Sec. III. We start with
generic limiting form to which all subsequent analysis can
referred. Consideration of the familiar spherical shell a
parallel plate problems shows that both of these proble
can readily be cast in terms of our generic form. In the l
two parts of Sec. III we treat rectangular and cylindric
boxes. The derivations are rather lengthy and require the
of Green’s functions. However, when the solutions are c
into the generic form, we once again find surprisingly simp
behavior.

Understanding the effects of image charge in Penn
trap mass spectrometers, particularly in ICRs is a major m
tivation for this work. In Sec. IV we show how image charg
affects theEÃB motion in these environments. In Sec. IV B
we show how our results can be extended to ion clouds
finite dimension. The results of this development are th
applied to drift mode data from our own ICR instrumen
Although the drift mode is well known to the broad IC
community, its importance is not widely appreciated. Ma
effects that reduce data quality have their origin in the d
mode. This is a point that we return to at the end of Sec.

II. DEFINITIONS AND METHODS

The term ‘‘image charge’’ is itself a misnomer, and th
can be confusing. The term comes from the ‘‘method of i
ages’’ which is but one, albeit powerful, technique for so
ing the general class of problems associated with the in
action of charges and conductors.12 Physically, when a
charge or charged body approaches a conductor held at s
potential, sayV, charge flows from the potential source

.,

il:
2 © 2001 American Institute of Physics
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1613J. Appl. Phys., Vol. 90, No. 3, 1 August 2001 M. D. Tinkle and S. E. Barlow
the conductor. This charge arranges itself on the surfac
the conductor in just such a way that the conductor’s pot
tial everywhere returns toV as required by Gauss’s law. Th
surface charge distributions gives rise to an additional field
at the source particle that affects its motion. ‘‘Induc
Charge Distribution’’ would probably be a better term, but
in so many other cases historical naming seems likely
prevail into the future. Since the location of the charged p
ticle determines the surface charge distribution, many ot
wise general techniques for finding solutions of Laplac
equation cannot be used because one cannot subtract th
ticle’s Coulomb potential in any convenient way.

We are focussing on the effects on the real charge p
duced by its own image. Effects of the image charge on o
charges can be found directly from the Green’s function a
are not considered further. Also, we are concerned here
with the nonrelativistic limit, i.e., we assume that all veloc
ties are small compared to the speed of light and that
wavelengths are large compared to the scale lengths o
experimental apparatus. Relativistic effects have been
cussed by Brown and Gabrielse13 and Dehmeltet al.14 Last,
energy and distance scales that require quantum mecha
treatment also lie outside our scope here.

The calculation of potentials and forces on charges in
presence of conductors is addressed in various ways in
numerous texts on electrostatics, but no text that we
aware of presents a convenient summary of the availa
techniques. Further difficulties arise in applying any one
these techniques to the range of problems we wish to
dress. We have found it easiest to use different methods
different parts of our calculations. In this section we expla
the techniques we will use.

A. Image charge pseudopotential

The measurable physical variable associated with
duced surface charge is the force it produces on the p
charge. We would like to express this force as the gradien
a function of the point charge’s position. There is a subtl
involved in this potential function that is best illustrated by
simple example using the method of images.

1. Motivating example

If a point charge of strengthq is at a position (x,y,z)
5(x0,0,0), (x0.0) with a grounded conductor in they–z
plane, we know from the method of images15 that the elec-
trostatic potential forx.0 can be expressed as the sum
the potentials from the point charge and a fictitious ima
charge of strength2q located at (x,y,z)5(2x0,0,0)

f~x,y,z!5
q

4pe0
S 1

A@~x2x0!21y21z2)#

2
1

A@~x1x0!21y21z2)#
D ~1!

for x.0. This is the potential that determines the force on
infinitesimal point charge, which is to say a point char
whose own induced surface charges produce neglig
forces. Can we use it to find the force on the chargeq? We
must first drop the potential produced by the charge, sinc
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
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cannot exert a force on itself. This leaves the potential of
image charge, which evaluated along thex axis is just

F I~x,0,0!5
2q

4pe0

1

x1x0
~2!

for x.0. Two courses of action present themselves for fin
ing thex component of the force: take]F I /]x and evaluate
at x5x0 , or evaluateF I at x5x0 and take]/]x0 of the
result. The results differ by a factor of two

]F I

]x U
x5x0

5
q

4pe0

1

4x0
2 , ~3!

and

]@F I ux5x0
#

]x0
5

q

4pe0

1

2x0
2 . ~4!

The force can be found directly from Coulomb’s Law usin
the image charge15

F5
2q2

4pe0

1

4x0
2 x̂, ~5!

so at least in this case, we have a choice of formulas for
force in terms of the potential

F~x0!52q
]F I

]x U
x5x0

x̂ ~6!

or

F~x0!5
2q

2

]@F I ux5x0
#

]x0
x̂. ~7!

The first choice seems like the natural one, but it requires
to keep a function of two position coordinates~x and x0!.
The second choice contains an unfamiliar factor of 1/2,
the force is reconstructed from a simple function of one p
sition coordinate (x0). This is the useful form, which we will
now derive more generally.

2. General derivation

Motivated by this example, we will show that a gener
expression for the force on a point chargeq in the presence
of both fixed charges and conductors at fixed potentials

F52q¹f2 1
2 q¹F, ~8!

where f is the ordinary electrostatic potential due to t
fixed charges and potentials, andF is the image charge
pseudopotential, the potential due to charges induced by
point charge, evaluated at the point charge coordinate.

From the definition of the electrostatic potentialf, the
work required to bring a point chargeq in to positionx from
infinity ~wheref50! while holding the charges producingf
fixed in place isW5qf(x). The force on the particle is the
negative of the gradient with respect to its position coor
nate of thetotal system energyunder the circumstances con
sidered. If the charges producingf(x) are indeed fixed and
there are no other energy terms involving the position of
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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point charge, then the force isF52q¹f. This is the famil-
iar result for an infinitesimal test charge, but it is a spec
case. It is not the definition off.

When a charge moves toward a conducting surface,
induced surface charges must bunch together, against
mutual repulsion, to maintain an equipotential. This add
term to the total electrostatic energy of the system that ac
reduce the attractive force felt by the point charge, by exa
a factor of two. This is easily derived from the well-know
expression for the total electrostatic energy~excluding self-
energy! of n discrete charges

W5
1

2 (
j 51

n

qjF j , ~9!

whereF j is the potential at chargeqj due to all the other
charges.14 If j 51 denotes the point charge, and the oth
are the charges induced on a grounded conductor, thenF j is
zero for all j Þ1 ~the induced charges! regardless of the po
sition of the point charge, and the total electrostatic energ

W5 1
2 qF, ~10!

whereF5F1 is the potential at the point charge due to t
induced surface charges. The force on the point charg
thus

F52 1
2 q¹F, ~11!

where the gradient is taken with respect to the position of
point charge. If the conductor is at some potential other t
ground, then we must add the familiar term2q¹f to this
thereby recovering Eq.~8!.

We refer toF(x) as the image charge pseudopotent
to emphasize its differences from ordinary potentials. Unl
f(x), F(x) is not simply a solution of Laplace’s or Pois
son’s equation, because its source term~the induced charge
distribution! is a complicated functional ofx, the point
charge location. Further,F(x) is only meaningful at the par
ticular location of the charge. As we describe below,F(x) is
proportional to the nonsingular part ofG(x,x8), evaluated at
x5x8. Thus,F(x) may be extracted from a family of solu
tions to Laplace’s equation, but is not itself a solution.

B. Method of images

In cases where the classical method of images can
applied, as in the preceding example, the force can be fo
directly from Coulomb’s law, treating the discrete ima
charges as real. The pseudopotential can be found in
same way. In Secs. III B and III C, we use the method
images to findF for a point charge inside a spherical co
ducting shell and for a point charge between infinite para
conducting plates. The example of a point charge nea
single infinite plate will be shown to be a limiting form ne
any smooth surface.

C. Green’s function techniques

The electrostatic Green’s functionG(x,x8) is the poten-
tial that an infinitesimal test charge would feel atx due to a
unit point charge atx8, in the presence of grounded condu
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
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tors of a specified geometry. ClearlyG containsF, and a
great deal more. If the method of images can be applied
problem, then a simple Green’s function can also be fou
and will give the same results. More generally, determin
the Green’s function is difficult or impossible, but for cylin
ders and rectangular boxes infinite series expansions forG in
various different forms are known, and we will use them
find F for these geometries.

1. Evaluation of G at xÄx8

The Green’s function can be written as

G~x,x8!5
1

4pe0ux2x8u
1H~x,x8!, ~12!

where H is the contribution from the induced surfac
charges, soF(x)5qH(x,x). In simple cases amenable t
solution by the method of images,G will clearly separate
into these pieces, but unfortunately this is not true of
infinite series forms forG for cylinders and boxes. One
straightforward solution is to use a computer to estimateF
from the limit asx approachesx8:

F~x!5q lim
x→x8

S G~x,x8!2
1

4pe0ux2x8u D . ~13!

2. Direct evaluation of H „x,x 8…

In some cases, the functionH(x,x8) is known or can be
found explicitly, and allows the direct evaluation ofF(x).
This technique was employed by Fine and Driscoll7 for the
infinite cylinder geometry. They showed how to reduce t
well-known solution of an infinitely long charged column
an infinite cylinder~see Davidson,3 Sec. 5.4! to a finite one
and finally to a single point charge. We do not use this
proach here, but it does provide a useful check.

3. Gradient of G

Following Smythe,12 the force on the charge can b
found by evaluatingG at x85x and taking the gradient

F52q2¹G~x,x!/2, ~14!

the idea being that the self-field term must vanish, sinc
cannot result in a force on the charge.~Note how the factor
of one half appears here.! This is a rather problematic equa
tion, sinceG is evaluated at its pole, and it can only b
considered shorthand for a more proper limiting procedu
Still, since the individual terms of the series expressions
G for cylinders and boxes are finite atx5x8, the equation
may be naively applied term by term. There is no reason
expect that the resulting series expression forF will con-
verge, but it often does.

4. Force on the conductors

The charge distributions on a surfaceS can be found
from the Green’s function as follows:

s52e0q¹G~x,x8!•dauxPS , ~15!

where the gradient is taken with respect tox. The force on
the point charge due tos can be calculated from Coulomb’
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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1615J. Appl. Phys., Vol. 90, No. 3, 1 August 2001 M. D. Tinkle and S. E. Barlow
law, but it is easier to find the total force on the conducto
which from Newton’s third law is the negative of the forc
on the charge.15 The surface charge creates a pressure

p5s2/2e0 , ~16!

directed out of the conductor. The force on the charge is t

F52E
S
s2da/2e0 . ~17!

This is the technique used by Xianget al.8

D. Numerical computation

If the Green’s function is not known, useful results c
be obtained from numerical solutions to Laplace’s equati
From Eq. ~12! it is clear that H(x,x8) is a solution to
Laplace’s equation that satisfies the unusual boundary co
tion

H~x,x8!52
1

4pe0ux2x8u
~18!

for xPS. Computation ofH(x,x8) for a particular value of
x8 yields the pseudopotential at that point

F~x8!5qH~x8,x8!. ~19!

This technique can be used, for instance, to study hype
loidal geometries, but as stated above, lies outside the s
of the present treatment.

III. RESULTS

A. Generic limiting form

As a smooth region of a conductor is approached clos
the pseudopotential approaches that of an infinite flat pl
From the method of images,F→2q/4pe02d as d→0,
where d is the distance to the surface. Thus ifj0 is the
distance to a conductor along thej axis of a rectilinear co-
ordinate system and the surface is perpendicular to thej axis
where they intersect,

F→2
q

4pe0j0

1

2~12 j̄ !
, ~20!

as j̄[j/j0→1. If the geometry is symmetric inj, we can
account for the limiting behaviors at both walls with th
form

F→2
q

4pe0j0

1

12 j̄2
~21!

asj̄→61. The complete solution forF along thej axis will
be the sum of this divergent term and a finite term. Expres
as a power series expansion about the origin, it will have
form

F52
q

4pe0j0
(
n50

`

Cnj̄n, ~22!
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
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with Cn50 for oddn, due to symmetry. The divergent term
by itself hasCn51 for all evenn. The results we obtain for
specific geometries can all be expressed in this form, w
different values for the coefficients.

B. Spherical shell

A single image charge can be used to represent the
tential inside a spherical conducting shell of radiusr 0 due to
surface charges15 induced by a point chargeq at a radiusr
,r 0 . The image charge lies along the same ray from
origin as the point charge, at a radiusr 85r 0

2/r , and has
chargeq852qr0 /r . The pseudopotential can be written a

F52
q

4pe0r 0

1

12 r̄ 2 , ~23!

where r̄[r /r 0 . For small displacements from the center
the sphere, it is useful to expressF as a power series inr̄

F52
q

4pe0r 0
~11 r̄ 21 r̄ 41 r̄ 61¯ !. ~24!

Note that this result, which is exact, is identical to the lim
ing form obtained in the previous section.

C. Parallel plates

The pseudopotential of a chargeq between two infinite
grounded parallel plates can be found by the method of
ages. This provides a useful check for the more difficult c
inder and rectangular box calculations, of which it is a lim
iting case. Let the plates be parallel to thexy plane and
located atz56z0 . If the charge hasz-coordinatez8, an
image charge2q at z52z02z8 will produce the required
boundary condition at thez5z0 plate, and another charg
2q at z522z02z8 is needed for the other plate. Unfortu
nately, each of these image charges affects the potenti
the other plate and must be countered by its own im
charge, producing an infinite sequence of image charges
of the same magnitude, but with alternating sign. The2q
image charges are spaced evenly along thez axis, separated
by 4z0 . The q image charges are also evenly spaced w
separation 4z0 , with one missing from the pattern atz5z8.
The potential atz8 due to all these image charges is, aft
some rearrangement

F52
q

4pe0z0
H ln~2!1(

j 51

`
z2

~2 j 21!@~2 j 21!2z0
22z2#J ,

~25!

where we have now substitutedz for z8. The terms of the
series can be regrouped as

F52
q

4pe0z0
(

m51

`

C2mS z

z0
D 2m

, ~26!

where

C2m5(
j 50

`
1

~2 j 11!2m11 , m.0. ~27!

Evaluating the first few terms, we find:C05 ln(2), C2

'1.0518,C4'1.0045, andC6'1.0005. Again, this is very
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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close to the generic form, with the biggest differences fou
in the lowest order terms of the expansion. In the more co
plex cases of rectangular and cylindrical boxes conside
below, these values represent limiting cases and can be
to verify the correctness of our derivations.~This is the last
case we consider whereC0 is determined.!

D. Rectangular box

Now consider a rectangular box with boundaries ax
56x0 , y56y0 , and z56z0 . The mathematical notation
is simplified by scaling the coordinates by these dimensio
i.e., x̃5x/x0 , ỹ5y/y0 and z̃5z/z0 . The shape can be de
scribed by two ‘‘aspect ratios,’’a5z0 /x0 and b5z0 /y0 .
One form for the Green’s function of the interior of the bo
is

G~ x̃,ỹ,z̃!5
z0

e0x0y0

3(
l 51

`

(
m51

`
sinh@klm~11 z̃,!#sinh@klm~12 z̃.!#

klm sinh~2klm!

3H sinF lp

2
~ x̃11!GsinF lp

2
~ x̃811!G

3sinFmp

2
~ ỹ11!GsinFmp

2
~ ỹ811!G J , ~28!

where

klm5
pz0

2 S l 2

x0
2 1

m2

y0
2 D 1/2

. ~29!
t
-

-
n

im
ile

ay
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The coordinatez̃, is the lesser ofz̃ and z̃8, and z̃. is the
greater. The coordinates in Eq.~28! can of course be per
muted at will. The image forces can be readily evalua
using Eq.~14!. This is particularly true for thez axis, where
the sinh functions assure rapid numerical convergence ex
very near the walls. Having once foundFz , forces in the
orthogonal directions,x andy can be written down immedi-
ately simply by permuting the variables. We find

Fz5
q2

2e0x0y0
(
l 51

`

(
m51

` H sinF lp

2
~ x̃11!G J 2

3H sinFmp

2
~ ỹ11!G J 2 sinh@2klmz̃#

sinh~2klm!
. ~30!

Equation ~30! can be integrated to give the parts of th
pseudopotential that contain all terms of the form
zn,xmzn,ypzn, andxmypzn. Only terms of the formxm,xmyp,
andyp remain. Using the above definitions fora andb, we
rewrite klm and define two new functions,glm andhlm

klm5
p

2
Aa2l 21b2m2, ~31!

glm5
p

2b
Aa2l 21~2m21!2, ~32!

and

hlm5
p

2a
Ab2~2l 21!21~2m21!2. ~33!

We can then write the image charge pseudopotential exp
itly as
F~ x̃,ỹ,z̃!52
q

2e0z0
abH (

l 51

`

(
m51

` FsinS lp

2
$11 x̃% D G2FsinS mp

2
$11 ỹ% D G2

@cosh~2klmz̃!21#

klm sinh~~2klm!!

1(
l 51

`

(
m51

` FsinS lp

2
$11 x̃% D G2

@cosh~2glmỹ!21#

bglm sinh~~2glm!!
1(

l 51

`

(
m51

`
@cosh~2hlmx̃!21#

ahlm sinh@~2hlm!#
J , ~34!
ve.
are

-

neglecting an additive constant. The three components on
right hand side of Eq.~34! may be identified as those con
taining all of thez terms, the remainingy terms and the pure
x respectively. Equation~34! may be used directly to evalu
ate all of the image charge electric fields on a particle i
rectangular box, however, except for the ‘‘z’’ terms conver-
gence is relatively poor. We find better performance by s
ply using the first term and permuting the variables wh
keeping the definitions ofa and b. Following our general
approach, each term in the sums can be expanded in a T
series and rearranged to get
he

a

-

lor

F~ x̃,ỹ,z̃!52
q

4pe0z0
(
t50

`

(
u50

`

(
s50

`

C2t,2u,2s~a,b!x̃2tỹ2uz̃2s,

~35!

s5t5u50, is excluded.

By symmetry only even powers of the coordinates survi
In the sample calculations below, we consider the squ
prism, wherea5b. We will give explicit forms for the C’s
in this case. Note that since Eq.~34! does not give the con
stant term, we cannot findC0,0,0 from the methods here.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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1. The square prism

The effects of image charge on a particle in a square prism can be directly applied to observations made in stan
cells. For the square prism,a5b and the equations simplify somewhat. We defineD05x05y0 so that z0

5 aD0 . We can now use Eq.~34! to evaluate the C’s by expanding the various functions in power series. The results m
summarized as

C0,0,2s~a!54
p2sa2s11

~2s!!
(
l 51

`

(
m51

`
~@2m21#21@2l 21#2!s2 ~1/2!

sinh~pA@2m21#21@2l 21#2a!
, ~36!

C2s,0,0~a!5C0,2s,0~a!5C0,0,2s~a21!, ~37!

C2s,2t,0~a!52
p2s12ta22s

~2s!! ~2t !!
(
l 51

`

(
m51

`
~@2m21#21 l 2a2!s2 ~1/2!~21! l 1tl 2t

sinhS pA~2m21!21 l 2a2

a
D , ~38!

C2t,0,2s~a!

C0,2t,2s~a! J 52
~21! tp2s12ta2s11

~2s!! ~2t !!
(
l 51

`

(
m51

`
~21! l~@2m21#21 l 2!s2 ~1/2!l 2t

sinh~pA@2m21#21 l 2a!
, ~39!

and

C2t,2u,2s~a!5
~21! t1u11p2s12t12ua2s12t12u11

~2s!! ~2t !! ~2u!! (
l 51

`

(
m51

`
~21!m1 l~m21 l 2!s2 ~1/2!m2ul 2t

sinh~pAm21 l 2a!
. ~40!

We are now in a position to explore the consequences of varying the trap lengths. Figure 1 shows plots for the low ord
of Eqs.~36!–~40!. Based on the discussion above on simpler systems, the qualitative, asymptotic behavior of these e
is as expected. Namely, asa→0, the system becomes like the parallel plate case, with the purez terms converging near unity
and all of the rest going to zero. In a similar vein, asa→`, the axial terms disappear and the transverse terms tend to
constant values. Table I lists the asymptotic limits of the C’s from the figures. It is interesting to note that many of the no
terms have maxima in the vicinity ofa51, the cubic box, which is close to the aspect ratio most commonly employed in
work.

E. Cylindrical shell

In comparison to the rectangular box, the calculations for a cylindrical box~including the infinitely long one! present
greater difficulties. We note that the following mathematics are rather complicated; however, in the end we find t
expressions forF in powers ofr andz are readily understood.

One expression for the Green’s function of the interior of a cylinder of radiusr0 and length 2z0 is

G~ r̄,f,z̄,r̄8,f8,z̄8!

5
1

pe0r0
(

m50

`

(
n51

` H em cos@m~f2f8!#Jm~ j m,nr̄ !Jm~ j m,nr̄8!

j m,nJm11
2 ~ j m,n!

sinh@ j m,n~a1 z̄,!#sinh@ j m,n~a2 z̄.!#

sinh~2 j m,na! J , ~41!
r.

e
t

d
is
whereem522dm,0 ; d0,051, anddm,050 otherwise;j m,n is
the nth zero of the Bessel functionJm(x); anda5z0 /r0 is
the ‘‘aspect ratio’’ of the cylinder. Ther and z coordinates
are scaled byr0 and their origin is the center of the cylinde
The coordinatez, is the lesser ofz and z8, and z. is the
greater. Thez component of the force on a chargeq can be
found by applying12 Eq. ~14! to G

Fz5
q2

2pe0r0
2 (

m50

`

(
n51

`

em

Jm
2 ~ j m,nr̄ !

Jm11
2 ~ j m,n!

sinh~2 j m,nz̄!

sinh~2 j m,na!
.

~42!

The same approach for the radial force yields a diverg
series, as mentioned above. Instead we find the force on
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
nt
he

conductor using Eq.~17!. Since the radial force is produce
entirely by charges induced on the cylindrical wall, it
easier to use an alternate form for the Green’s function

G~ r̃,f,z̃,r̃8,f8,z̃8!

5
1

2pe0z0
(

m50

`

(
n51

` H em cos@m~f2f8!#sinFnp~ z̃11!

2 G
3sinFnp~ z̃811!

2 GTn~ r̃,r̃8!J , ~43!

where
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 1. Plots of the first six terms of
the power series expansion of the im
age charge pseudopotential for
square prism as functions of the aspe
ratio. ~A! The pure ‘‘axial’’ terms—
powers ofz only. ~B! The pure ‘‘ra-
dial’’ terms—powers ofx or y only.
~C! The crossed ‘‘radial’’ terms—
powers ofx and y. ~D! The crossed
‘‘radial’’ and ‘‘axial’’ terms—powers
of x and/ory andz.
r

Tn~ r̃,r̃8!5

I mS npr̃,

2 D
I mS np

2a D F I mS np

2a DKmS npr̃,

2 D

2KmS np

2a D I mS npr̃,

2 D G , ~44!

I m andKm are modified~or ‘‘hyperbolic’’ ! Bessel functions,
and the tilde indicates scaling byz0 rather than byr0 . Using
the identityI m(u)Km8 (u)2Km(u)I m8 (u)521/u, we find the
surface charge on the cylindrical wall is
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
TABLE I. Asymptotic limits of image charge potential coefficients fo
Square Box.

Cst,2s,2u

a5b
z0 /x05z0 /y0

a→0
Parallel
plate

a51
Cube

a→0
Square
tube

C0,0,2 1.0518 0.6692 0
C0,0,4 1.0045 1.1850 0
C0,0,6 1.0005 1.1047 0

C2,0,05C0,2,0 0 0.6692 1.0518
C4,0,05C0,4,0 0 1.1850 1.0045
C6,0,05C0,6,0 0 1.0721 1.0005
C2,0,25C0,2,2 0 0.9690 0
C2,0,45C0,2,4 0 0.4085 0
C4,0,25C4,0,2 0 0.4085 0

C2,2,0 0 0.9690 1.2557
C2,4,05C4,2,0 0 0.4085 0.269 36

C2,2,2 0 1.0147 0
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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sc5
2q

2pe0z0
(

m50

`

(
n51

` H em cos@m~f2f8!#sinFnp~ z̃11!

2 G

3sinFnp~ z̃811!

2 G I mS npr̃

2 D
I mS np

2a D J . ~45!

Squaring this double sum and integrating it to find the to
radial force on the cylinder is somewhat involved. The ide
tity

E
0

2p

cos~x!cos~mx!cos~nx!dx

55
p for m50 and n51

p or m51 and n50

p/2 for m2n561 and n,m.0

0 otherwise

~46!

is useful. The radial force on the charge from Eq.~17! is

Fr5
q2

2pe0r0z0
(

m50

`

(
n51

`

sin2@np~ z̃11!/2#

3
I m~npr̃/2!I m11~npr̃/2!

I m~np/2a!I m11~np/2a!
. ~47!

This is the same form obtained by Xianget al.8 except that
they omitted them50 terms, which are the most importan

From Fz andFr we can findF, except for an unknown
additive constant, in two different ways

F~r̄,z̄!52
2

q H F E Fz~ r̄,z̄!dz̄G1F E Fr~ ,r̄,0!dr̄ G J ~48!

F~r̃,z̃!52
2

q H F E Fz~0,z̃,!dz̃G1F E Fr~ r̃,z̃!dr̃ G J ,

~49!

where care must be exercised to keep the normalizations
rect. The term-by-term integration ofFz is straightforward,
but that ofFr is not. The treatment of either form require
about the same amount of labor. Since we are intereste
the power series expansion ofF,

F~r̄,z̄!52
q

4pe0z0
(

m50

`

(
n50

`

Cm,n~a!r̄2mz̄2n, ~50!

we find that the second of these two forms is the more c
venient. Evaluation of the integral over the radial for
means integrating

2z0

np
RmS np

2z0
r D[E I mS np

2z0
r D I m11S np

2z0
r Ddr, ~51!

which cannot be done in terms of well known functions. T
integral can be done analytically by first expanding bo
Bessel functions in a power series and integrating term
term, to get
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
l
-

or-
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Rm~x!5x2(m11)(
j 50

`
x2 j

j 1m11

3 (
k50

j
1

~ j 2k1m11!! ~k1m!! ~ j 2k!!k!
. ~52!

In spite of its cumbersome appearance,Rm(x) is well be-
haved and readily evaluated. We can now write do
F(r,z) @or F( r̃,z̃)#

F~r,z!52
q

4pe0z0F 2a (
n51

` coshS 2 j 0,n

z

r0
D

j 0,n$J1~ j 0,n!%2 sinh~2a j 0,n!

1
2

p (
m50

`

(
n51

` RmS np

2z0
r D H sinS np

2z0
@z01z# D J 2

nIm11S np

2a D I mS np

2a D G
~53!

or

F~r̃,z̃!52
q

4pe0z0F 2a (
n51

`
cosh~2 j 0,na z̃!

j 0,n$J1~ j 0,n!%2 sinh~2a j 0,n!

1
2

p (
m50

`

(
n51

` RmS np

2a
r̃ D H sinS np

2
@11 z̃# D J 2

nIm11S np

2a D I mS np

2a D G .

~54!

Expressions for the coefficients of Eq.~50! can be obtained
from Eq.~53! by substituting the Taylor series expansions
cosh(2j0,nz/r0) and sin(np@11z#/2z0), and rearranging
terms. The first term on the right hand side of Eq.~53! @or
Eq. ~54!#, gives us all of the pure axial terms, while th
second gives all of the remaining terms excepting only
constant term,C0,0(a).

C0,2m~a,r0!5
2

~2m!! S 2

r0
D 2m

(
n51

` j 0,n
2m

@J1~ j 0,n!#2 sinh~2 j 0,na!
~55!

or

C0,2m~a,z0!5
~2a!2m11

~2m!! (
n51

` j 0,n
2m

@J1~ j 0,n!#2 sinh~2 j 0,na!
. ~56!

For the actual numerical values in a particular instance,
given r0 andz0 either expression will do. Evaluation of th
purely axial terms is most readily accomplished using E
~56!, because of its convergence properties for alla. As ex-
pected, asa→0, i.e., holdingz0 constant and lettingr0

→`, theC0,2m’s are identical to those of the infinite paralle
plate system discussed above. Use of Eq.~55! by contrast is
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



w

s
n

e
rms

ap

or
on
he
w-
e
de-
17.

th
pe

of

l

1620 J. Appl. Phys., Vol. 90, No. 3, 1 August 2001 M. D. Tinkle and S. E. Barlow
equivalent to holdingr0 constant while varyingz0 , which
clearly must diverge asa→0. Figure 2~A! shows plots of
C0,2, C0,4, andC0,6.

The coefficients for purely radial displacements follo
directly from our definition ofRm above; however no simple
general form as in Eqs.~55! or ~56! emerges. Specific form
for the low order terms, including cross terms, can be fou
however. It is convenient to define two variables

jn[
p@2n21#

2a
~57!

and

FIG. 2. Plots of the the first six terms of the power series expansion of
image charge pseudopotential for a cylindrical box as functions of the as
ratio. ~A! The pure axial terms—powers ofz only. ~B! The pure radial
terms—powers ofr only. ~C! The crossed radial and axial terms—powers
r andz.
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
d

zn[
pn

2a
. ~58!

Then

C2,05
1

a (
n51

`
jn

I 0~jn!I 1~jn!
, ~59!

C4,05
1

16a (
n51

` jn
3~3I 2~jn!1I 0jn!

I 0~jn!I 1~jn!I 2~jn!
, ~60!

C6,05
1

576a (
n51

`

jn
5H 10

I 0~jn!I 1~jn!
1

5

I 1~jn!I 2~jn!

1
1

I 2~jn!I 3~jn!J , ~61!

C2,25
a

2 (
n51

`
~21!nzn

3

I 0~zn!I 1~zn!
, ~62!

C2,452
a3

24 (
n51

`
~21!nzn

5

I 0~zn!I 1~zn!
, ~63!

and

C4,25
a

32 (
n51

`
~21!nzn

5@3I 2~zn!1I 0~zn!#

I 0~zn!I 1~zn!I 2~zn!
. ~64!

The limiting values listed in Table II are again in lin
with our generic discussion above. These coefficient te
are shown plotted in Figs. 2~B! and 2~C!. The experimental
data shown below were gathered with a cylindrical ion tr
wherez051.66 cm andr 052.00 cm, soa50.8314 andD0

50.02357.

IV. EXAMPLES FROM PENNING TRAPS

As we stated in the introduction, a major motivation f
undertaking this study was to quantify the image effects
ion motion in Penning ion traps. A general treatment of t
Penning trap lies well outside the scope of this article. Ho
ever, a brief introduction will serve to illustrate how imag
charge can affect experimental observation. Much more
tailed treatments can be found in References 3, 16, and

e
ct

TABLE II. Asymptotic limits of image charge coefficients for cylindrica
box.

Cst,2s

a→0
Parallel
plate

4th Order
exp’l. trap a51

a→0
long
tube

C0,2 1.0518 0.7755 0.5880 0
C0,4 1.0045 1.1669 1.1845 0
C0,6 1.0005 1.0180 1.1246 0
C2,0 0 0.7534 0.8792 1.0027a

C4,0 0 1.1243 1.0884 1.0009
C6,0 0 1.0572 1.0020 1.0003
C2,2 0 20.9157 21.0309 0
C4,2 0 20.3470 20.4359 0
C2,4 0 0.1822 0.1884 0

aAgrees with results of Fine and Driscoll@Ref. 3, Eq.~32!#.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Ions of a single charge sign are stored in a Penning
through the combined effects of static electric and magn
fields. For simplicity, we take the magnetic field to be u
form and parallel to thez axis

B5B0ẑ. ~65!

The magnetic field provides radial confinement of ion
while the electric field provides axial confinement. The ele
tric field itself is produced by biassing the trap electrod
with appropriate voltages. In addition to the radial confin
ment by the magnetic field, there is always some radial e
tric field whose force is directed outwards. The result is
EÃB drift in the Q direction. For an ion of chargeq and
massM in a circular orbit of radiusr 6 , one can show16 that
its orbital frequency is given by

v65
V

2 H 16A12
4

MV2 FF~r !

r G
r 5r 6

J , ~66!

whereV5qB/M is the cyclotron frequency andF(r ) is the
radial force. The ‘‘1’’ sign in Eq. ~66! is the high frequency
motion that we call the ion cyclotron resonance frequen
while the ‘‘2 ’’ sign refers to the generally much lowerEÃB
drift frequency. This latter motion is generally known as t
‘‘magnetron’’ or ‘‘diocotron’’ frequency, depending on
whether the dominant source of the radial force is due to
trapping fields or image charge, respectively. It is easy
show from Eq.~66! that

v15V2v2 . ~67!

SinceV;v1@v2 , v2 reduces to the simple approxima
tion

v2'
E~r !/r

B
. ~68!

Thus, to first order,v2 is independent of both ion mass an
charge. Further, it is clear from Eq.~67! that if v2 is under-
stood, the ICR frequencies are also described. From the
earity inherent in the theory of electric and magnetic fiel
E(r ) may be evaluated as a simple sum over all of its sou
terms. This in turn allows us to describe the various con
butions to the drift frequency in the approximation of E
~68!

v2'v2~Trap fields!1v2~ Image Field!1v2~Other!.
~69!

A. The cubical ICR cell

At this point we can ask the question: Under norm
operating conditions, in a standard instrument, how large
image charge effects likely to be? For the sake of concr
ness, we consider a cubical ICR cell of dimensionx05y0

5 z05D0 , and whose z axis is aligned parallel to a unifor
magnetic fieldBÄB0ẑ. From Eqs.~35!, ~36!, ~68!, and~69!

v2~ Image Field!'
q

MVr H 2
1

2

]F image~r ,u,z!

]r J
r 5r cm

~70!

or keeping only the linear terms of the pseudopotential
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
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v2~ Image Field!'
1

B H qN

4pe0D0
3J C2,0,0. ~71!

Using the value ofC2,0,0 from Table I and takingD0

54 cm, the shift in the observed magnetron frequency du
image charges,f m, image, is

f 2, image'1.92~10!25N/BHz, ~72!

whereN is the number of elementary charges and the m
netic field B is in Teslas. This is a small effect, but can b
readily detected in some cases.

B. Estimating effects due to axial extension

Up to here we have considered the effects of ima
charge on compact, i.e., point-like ion clouds. With certa
restrictions and simplifications, approximations for extend
ion clouds can be found. This development is necessar
order to couple the forgoing developments to the experim
tal observations presented below. When many ions are sim
taneously stored in a Penning trap, they rapidly approac
thermal equilibrium state through ion–ion collisions.16,17

This equilibrium can be characterized by ion number, to
canonical angular momentum and energy~or tem-
perature!.16,17 ~To simplify the discussion, we will restric
ourselves to ion clouds of a single charge to mass ratio.! An
ion cloud at thermal equilibrium rotates rigidly about its ow
axis3 with a frequencyv r that is determined by trapping
fields and its own space charge.~Image charge plays only a
secondary role here.!

For cases of practical interest in mass spectroscopy,
may further assume that the ion cloud’s radius,r p and length
2zp are small compared to the trap’s radius and length,
spectively. Under these conditions, we find experimenta
that a resonance excitation near eitherv1 or v2 causes the
entire ion cloud to orbit the trap’s center like a single bod
We interpret this motion as a translating equilibrium state16

It is not unusual to observe these ‘‘modes’’ for tens of tho
sands to millions of periods. In the language of nonneu
plasma physics these are the undamped upper and lower
cotron modes.3 Experimentally these modesare damped, but
the damping is due primarily to ion-neutral collisions and
nonlinearities in the trapping field~see discussion below!.
Further, no experimental evidence has emerged forkzÞ0
associated with these modes. That is, no drift modes wh
ions at differing axial positions orbit with different ampl
tudes or frequencies have been reported to our knowle
Thus we feel justified in treating the excited ion cloud as
rigid body that moves in a mean field.

In yet another simplification, we adopt the ‘‘cold flui
model,’’ 16–19where the ion cloud is described approximate
by a spheroid of uniform charge density.20 A cold ion cloud
can be characterized by three parameters, its half-lengthzp ,
its radiusr p , and its charge densityn0 or total chargeN.
~Another model that treats the cloud as a uniform rod
finite length has been employed elsewhere.21 A similar model
was also used and explained in detail by Fine and Drisco7!
With the above restrictions, we can average the radial for
due to nonlinear terms along the length of the cloud. T
average values ofz2 andz4 over the spheroidal cloud are
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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^z2&50.5zp
2 ~73!

and

^z4&5A0.5zp
4 . ~74!

These are the values we use later to describe magnetron
quencies and their shifts when nonlinear effects become
servable.

C. The ‘‘fourth order’’ cylindrical ICR cell

In order to investigate the role that trapping fields play
ICR mass spectrometry, we constructed a cylindrical Penn
trap with an aspect ratio (a5z0 /r 0) of 0.8314. The electro-
static potential of the trap near the center is

FTrap~r ,z!'VTF0.936

r 0
2 S 1

2
r 22z2D2

0.227

r 0
6

3S 5

16
r 62

45

8
r 4z21

15

2
r 2z42z6D G , ~75!

whereVT is the applied trapping potential andr 052 cm is
the trap radius. By design, the fourth order terms in the tr
ping potential are missing. The coefficient of the quadra
term is our best experimental determination; and to wit
our ability to measure, the fourth order term is zero. T
coefficient of the sixth order term is the result of a comp
tation. The image charge pseudopotential for the trap
found by evaluating the results of Section E. Eqs.~56!–~62!
for a50.8314, and assumingN ions of chargeq

F image~r ,z!'2
qN

4pe0r 0
F0.753r 2

r 0
2 1

0.776z2

r 0
2 1

1.124r 4

r 0
4

2
0.916r 2z2

r 0
4 1

1.167z4

r 0
4 G . ~76!

With the help of Eq.~68! we may write

v2'
q

MVr H 2
]FTrap~r ,z!

]r
2

1

2

]F image~r ,z!

]r G . ~77!

Substitution from Eqs.~75! and~76! and making use for the
mean values found above gives

f 2'
VT

B
~372.4220.001 058r 2

4 10.006 35r 2
2 zp

2

20.005 99zp
4!

~78!

1
N

B
~21.5710.161r 2

2 20.0328zp
2!Hz.

Equation~78! is written in ‘‘convenience’’ units, i. e.,r 2 and
zp are in millimeters;N is in millions; while VT and B re-
main in SI units.

Figure 3 shows the experimental time evolution of ma
netron motion for two large electron clouds stored in t
trap. HereVT530.00 V andB57.0469 T. The electron cloud
was produced by electron bombardment of background
and required 40 s with a 100 eV, 10 nA beam. We estim
that the background pressure was'2(10)29 Torr. Since
each ionization event will produce two electrons, the clo
Downloaded 12 Feb 2007 to 128.187.0.164. Redistribution subject to AIP
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had approximately 107 electrons.22 The zero of time was
taken at the point that the ionization electron beam w
switched off.

In both cases we note that magnetron motion appea
spontaneously during the production of the electron clo
Currently, we have no explanation for the appearance
magnetron motion during the production of electron clou
but we do regularly observe the effect. Subsequent excita
of magnetron motion was produced by a resonant chirp.
signal data indicate that no particles were lost during
course of the measurement and that the two electron clo
were essentially identical. We also note that the damping
the magnetron motion is very similar in all cases. Other
periments showed that at low background pressure,
damping rate of magnetron motion is roughly proportional
electron number, not neutral density. This may be an ad
tional manifestation of anharmonic effects that couple cen
of mass motion to internal motion of individual particles.23

In comparing both the signal and frequency data of Figs. 3~a!
and 3~b! we see that the repeated magnetron excitations
little or no perceptible effects on the gross features of
time evolution. Figure 3~b! illustrates another mysteriou
feature; namely, the magnetron motion never completely
appeared, although its amplitude became small. This ma
the result of low amplitude noise in the system or may po
to something more fundamental.

Turning our attention now to the frequency data, we s
a number of interesting effects.~The dotted line in Figs. 3~a!
and 3~b! is the expected empty trap magnetron frequenc!
First, we note that the gross features of the frequency ev

FIG. 3. Evolution of electron magnetron signal in 4th order ICR cell.d

measured magnetron frequency,n measured magnetron signal amplitud
connecting lines are for clarity. Periodic increases of magnetron signa
due to a weak external dipole excitation. Empty trap magnetron freque
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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tion are unaffected by the magnetron excitations. The ini
magnetron frequencies are nearly identical, as is the rat
frequency evolution. Second, we see that with magne
excitation, the frequency jumps up by a small amount a
then stays nearly constant during the major portion of
damping, after which it starts to rise again.

The general trends of the frequency evolution can
explained by radial transport. That is, the electron cloud
some initial length determined by the trapping potential a
the cloud’s parameters of radius and ion number. Electr
neutral collisions or other sources of torque drive rad
transport. As the cloud expands radially, it shortens axia
The effects of ion cloud length and magnetron amplitude
illustrated in Fig. 4. Figure 4 is a contour plot of Eq.~78! in
which we have takenN510 million and set the zero to th
empty trap frequency. If the ion cloud had an initial ha
length, zp'6 mm, the magnetron frequency would sh
about 10 Hz below the empty trap value. As it shortens d
to radial transport, the magnetron frequency grows. Mag
tron excitation also causes the frequency to increase. Du
the damping of the magnetron motion, the competing effe
of radial expansion and loss of magnetron amplitude k
the frequency nearly constant. We do not, however, h
sufficient data to show whether the very constant freque
during damping observed here is more than just coincide

Figure 4 itself is illustrative, not quantitative. The sp
cific contours, their separation and shape are sensitive to
exact value ofN. Currently, we have no good way to g
more than a factor of two estimate of this number. Intere
ingly, when we try to fitzp to the time evolution of the
frequency data within this uncertainty ofN, we find thatzp

decreases approximately linearly with time with a rate
1 – 6(10)23 mm/s depending on the assumed value onN. We
also find that the magnetron excitations in Fig. 3 were 1–
mm. The data are inadequate to make any more precise
signments.

D. Implications for ICR mass spectrometry

In chemical applications of ICR mass spectrometry, io
of various mass to charge ratios are simultaneously store

FIG. 4. Expected magnetron frequency shift in an experimental Pen
trap as a function of ion cloud length and magnetron~or cyclotron! radius in
cylindrical box trap witha50.8314,r 052 cm, B57.0469 T, and 107 el-
ementary charges. Dashed contours denote values less than 0.
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the trap. After allowing for thermalization, all of the ions a
excited by a dipole rf field transverse toB whose frequency
is swept through the resonant ICR frequencies. Ions at e
different mass remain clustered together and gyrate abou
center of the trap at their respective ICR frequencies. T
motion induces image currents on ‘‘receiver’’ antennas a
the ions are detected. Typically, these signals are digiti
and passed through a fast Fourier transform to produc
power spectrum. The power spectrum is converted to a m
spectrum with the help of a variant of Eq.~66!. Both the
excitation and detection antennas are segments of the
electrodes that lie parallel to the magnetic field.

Mass spectrometers are evaluated by several parame
including mass resolution, dynamic range, sensitivity, m
precision and accuracy, reproducibility, and ‘‘throughpu
~This latter term refers to how many measurements and
measurements can be made per unit time.! As with any type
of spectroscopy, ultimate performance in any one of th
areas generally occurs at the expense of others. A hig
skilled operator can generally find conditions that give sa
factory results for a particular problem. In the identificatio
and characterization of large biomolecules, the tremend
mass resolution as well as its high throughput make ICR
attractive tool. The trick is to accurately relate the observ
frequencies to masses.

According to Eq.~67! the difference between the ob
served ICR frequency,v1 and the actual cyclotron fre
quency,V is just the drift frequency.24 Thus, amplitude and
ion abundance dependent frequency shifts can be largely
terpreted in terms of their effects on the drift frequency.
we have shown, image charge gives rise to both linear
nonlinear terms in the radial electric fields. Further, when
trapping fields also contain nonlinearities, they must be
cluded with the image charge effects in the interpretation
data.

V. CONCLUSIONS

We have shown how the forces on charges that a
from charge distributions that they induce may be cast in
form of a potential that we call the ‘‘image charge pseud
potential.’’ The ‘‘pseudopotential’’ concept allows us t
readily compute the forces on a charged particle~or compact
group of charges! located interior to a variety of electrod
geometries, e.g., in ion traps. By using the pseudopoten
formalism we can bring these effects into our calculations
an equal footing with other forces. Thus, estimates of f
quency shifts and perturbations of orbits in Penning traps
be made in rather straightforward ways. Further, our form
ism allows us to see an essential unity that applies to
cases. Namely, when the image charge pseudopotenti
expressed in the standard form of Eq.~22!, the coefficients of
the various powers of the coordinates all vary betwe
'61. Interestingly, the most complicated fields are tho
associated with length to width ratios~a’s! between 1 and 2,
which is just the range where most trap designs fall.

g
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