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Alternative electrostatic Green’s function for a long tube
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This note describes an expression for the electrostatic Green’s function in a long conducting tube.
The expression allows one to readily compute the potentials and fields at and in the vicinity of the
singularity where other methods have difficulty. ZD03 American Institute of Physics.
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In recent years several authors and groups have tackled *
the problem of computing the force on a charged particle due H(x;x")=a E cogmé)
to the charge it induces on the surface of nearby conductors. m=-=
15 Although solutions for simple boundary conditions are -
well known formally®’ the representations are generally un- Xf Am(K,r") 1 y(kr)cogkz)dk. (€)
suited for evaluation at or near the source. By building on 0
some of this recent work, an alternative representation of thelere, 1 ,(x) is the Bessel function of the first kind with
electrostatic Green’s function for an infinitely long tube canimaginary argument and is a normalization constant. The

be found in the form: challenge is then to find\,,(k,r") subject to the boundary
condition, Eq.(2). Hess and Chénpointed out two results
q 1 from work by Watsofi that are useful. The first is an integral
d(x;x")= Feo W —H(x;x") |, (1) representation of the Bessel function of the second kind of

imaginary argumenfwWatson’s Eq(1), Sec. 6.18

wherex’ is the location of a point charge, the source. The * cog kx)
functionH(x;x") is a solution of the Laplace equation and is Ko(x2)= J; K+ 22
determined by the boundary conditions. Most of the known

solutions to Eq(1) involve multiple sums over products of The second result follows from Watson’s H§), Sec. 11.3,
transcendental functions and incorporate both terms on the
right-hand side in such a way that the boundary condition

d(x=wall;x")=0 is enforced with each individual term of o
the sum. This is. a “convignenqe" not a nepgssity. _ Ko(x)= 2 Kn(R)Iy(r)cogme). (6)

The alternative here is to find an explicit expression for m=—o

H(x;x") to which the free space Coulomb potential can be
added. SincéH(x;x') contains no poles, it is behaves well

4

x=VR?+r?—2Rrcog ), (5)

After some manipulatiotd (x;x") is found to be

throughout the volume of interest. 2 =
Note for simplicity of notationg/4me, is set equal to H(xX)== 2 (2— 8om)cOgMo)
. . . . T m=0
unity and all distances are scaled to the cylinder radiys,
The evaluation oH(x;x") begins by replacing the real = Km(K) I m(kr") 1 q(kr)cogkz)
cylinder wall with a “virtual” cylinder and the potential ev- X fo K dk. (7

erywhere on this cylindrical boundary is found from Cou-

lomb’s law. If the center of the cylinder is located at the Here, 6y, is the Kronecker delta and is equal to unity for
origin and the point charge in cylindrical coordinatesz) m=0, and zero otherwise. The validity of E(¢) can be

is placed at (’,0,0) then demonstrated in several ways. Begin by noting that each
term in Eq.(7) is a solution to the Laplace equation inside
the cylinder. Then, setting=ry=1, gives

2 , =
H(ro,e,z;r’,0,0)=;2 (2— Som)cOEMO)

m=0

1
J1+22+1'2=2r" cod 6)

D(rg,6,z;r',0,0=

®(rqg,0,2;r',0,0) is illustrated in Fig. 1 by a contour plot on "
a cylindrical surface. A solution tdd(x;x') can be con- xj Kmn(K) I n(kr")cogkz)dk, (8)
structed with the general form, 0

which should equal Eq2). The integral in Eq(8) is given
dElectronic mail: se.barlow@pnl.gov explicitly in Gradshteyn and Ryzhik<Eq. 6.672.4,
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one would expect, for large’, many terms irm are needed.
Third, if the field point,r, is set equal to the source point,

in Eq. (7), the result can be expanded term by term in a
Taylor series inr. Then collecting terms of each order, the
resulting integrals can be performed numerically to get the
“pseudopotential” given by Tinkle and Barlo.

H pseudé!) = —0.87969- 1.0027 %~ 1.0009 *— 1.0003 °

—1.000%8. .. (10)

Note that Tinkle and Barlohwere unable to find the zeroth
order term by their method. Finally, evaluating the fields
from the gradient of the potential does not seen to give rise
to convergence problems.
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1+r'2+2°

2r

1
= 2—\/7 Qm-1

Here Q,(Xx) is the Legendre function of the second kind of
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