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Alternative electrostatic Green’s function for a long tube
S. E. Barlowa)

W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
P.O. Box 999 (K8-88), Richland, Washington 99352

~Received 5 June 2003; accepted 13 August 2003!

This note describes an expression for the electrostatic Green’s function in a long conducting tube.
The expression allows one to readily compute the potentials and fields at and in the vicinity of the
singularity where other methods have difficulty. ©2003 American Institute of Physics.
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In recent years several authors and groups have tac
the problem of computing the force on a charged particle
to the charge it induces on the surface of nearby conduc
1–5 Although solutions for simple boundary conditions a
well known formally,6,7 the representations are generally u
suited for evaluation at or near the source. By building
some of this recent work, an alternative representation of
electrostatic Green’s function for an infinitely long tube c
be found in the form:

F~x;x8!5
q

4pe0
S 1

ux2x8u
2H~x;x8! D , ~1!

wherex8 is the location of a point charge, the source. T
functionH(x;x8) is a solution of the Laplace equation and
determined by the boundary conditions. Most of the kno
solutions to Eq.~1! involve multiple sums over products o
transcendental functions and incorporate both terms on
right-hand side in such a way that the boundary condit
F(x5wall;x8)50 is enforced with each individual term o
the sum. This is a ‘‘convienence’’ not a necessity.

The alternative here is to find an explicit expression
H(x;x8) to which the free space Coulomb potential can
added. SinceH(x;x8) contains no poles, it is behaves we
throughout the volume of interest.

Note for simplicity of notation,q/4pe0 is set equal to
unity and all distances are scaled to the cylinder radius,r 0 .

The evaluation ofH(x;x8) begins by replacing the rea
cylinder wall with a ‘‘virtual’’ cylinder and the potential ev
erywhere on this cylindrical boundary is found from Co
lomb’s law. If the center of the cylinder is located at th
origin and the point charge in cylindrical coordinates (r ,u,z)
is placed at (r 8,0,0) then

F~r 0 ,u,z;r 8,0,0!5
1

A11z21r 8222r 8 cos~u!
. ~2!

F(r 0 ,u,z;r 8,0,0) is illustrated in Fig. 1 by a contour plot o
a cylindrical surface. A solution toH(x;x8) can be con-
structed with the general form,
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H~x;x8!5a (
m52`

`

cos~mu!

3E
0

`

Am~k,r 8!I m~kr !cos~kz!dk. ~3!

Here, I m(x) is the Bessel function of the first kind with
imaginary argument anda is a normalization constant. Th
challenge is then to findAm(k,r 8) subject to the boundary
condition, Eq.~2!. Hess and Chen1 pointed out two results
from work by Watson8 that are useful. The first is an integra
representation of the Bessel function of the second kind
imaginary argument@Watson’s Eq.~1!, Sec. 6.16#:

K0~xz!5E
0

` cos~kx!

Ak21z2
dk. ~4!

The second result follows from Watson’s Eq.~8!, Sec. 11.3,

x5AR21r 222Rr cos~u!, ~5!

K0~x!5 (
m52`

`

Km~R!I m~r !cos~mu!. ~6!

After some manipulationH(x;x8) is found to be

H~x;x8!5
2

p (
m50

`

~22d0,m!cos~mu!

3E
0

` Km~k!I m~kr8!I m~kr !cos~kz!

I m~k!
dk. ~7!

Here, d0,m is the Kronecker delta and is equal to unity f
m50, and zero otherwise. The validity of Eq.~7! can be
demonstrated in several ways. Begin by noting that e
term in Eq.~7! is a solution to the Laplace equation insid
the cylinder. Then, settingr 5r 051, gives

H~r 0 ,u,z;r 8,0,0!5
2

p (
m50

`

~22d0,m!cos~mu!

3E
0

`

Km~k!I m~kr8!cos~kz!dk, ~8!

which should equal Eq.~2!. The integral in Eq.~8! is given
explicitly in Gradshteyn and Ryzhik’s9 Eq. 6.672.4,
1 © 2003 American Institute of Physics
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Km~k!I m~kr8!cos~kz!dk

5
1

2Ar 8
Qm21/2S 11r 821z2

2r D . ~9!

HereQm(x) is the Legendre function of the second kind
orderm. Whenm is a half integer,Qm21/2(x) is closely re-
lated to toroidal functions. In a recent paper, Cohlet al.10

showed that the sum that results from substituting Eq.~9!
into Eq. ~8! is indeed equal to the right-hand side of Eq.~2!.
The full dimensionality can be readily recovered by sub
tutionsu→u2u8 andz→z2z8.

Several interesting things follow from Eq.~7!. First, the
individual terms in the sum generally donot go to zero at the
boundary when it is substituted into Eq.~1!. Rather, the
boundary condition is met by the entire sum. Second,
integrals overk generally behave well except when bothr
andr 8 are large. They do converge, but not quickly. Also,

FIG. 1. Plot of Eq.~2! @F(r 0,u,z;r 8,0,0)#.
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one would expect, for larger 8, many terms inm are needed.
Third, if the field point,r, is set equal to the source point,r 8,
in Eq. ~7!, the result can be expanded term by term in
Taylor series inr. Then collecting terms of each order, th
resulting integrals can be performed numerically to get
‘‘pseudopotential’’ given by Tinkle and Barlow.3

Hpseudo~r !520.8796921.0027r 221.0009r 421.0003r 6

21.0001r 8 . . . ~10!

Note that Tinkle and Barlow3 were unable to find the zerot
order term by their method. Finally, evaluating the fiel
from the gradient of the potential does not seen to give
to convergence problems.
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