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A general phase modulation algorithm has been developed for the stored waveform inverse
Fourier transform (SWIFT) excitation method used in Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR or FTMS). The algorithm, based on the time shifting
theorem and the uncertainty principle, shows that the quadratic phase modulation is the
theoretically optimal method for square magnitude spectral profiles. For more complicated
magnitude spectral profiles, the corresponding phase functions can be generated through the
algorithm by using a nonlinear grid on the frequency domain. The degree of dynamic range

reduction can be estimated from a simple equation.

I. INTRODUCTION

Fourier transform ion cyclotron resonance (FT-ICR)
mass spectrometry has become one of the most powerful
techniques for mass analysis and for the study of ion-mole-
cule reactions. The principles and applications of FT-ICR
mass spectrometry have been reviewed.' One of the most
attractive features of the FT-ICR technique is its ability to
manipulate trapped ions.” Ions can be excited or ejected se-
lectively in routine FT-ICR experiments. The development
of FT-ICR ion-excitation methods has provided new power
for the technique.® High quality excitation methods without
mass discrimination are required for high resolution quanti-
tative mass analysis and isotope ratio determinations as well
as for ion manipulation. The first FT-ICR excitation method
is the rectangular-pulse technique*® which has very limit-
ed bandwidth. The bandwidth limit of the single pulse exci-
tation technique was overcome by introduction of the “fre-
quency sweeping” or “‘chirp” technique which becomes the
most widely used FT-ICR excitation method.*®® However,
the magnitude spectra obtained by frequency sweeping exci-
tation are nonuniform over the frequency range to be exam-
ined. Furthermore, the broad roll off in excitation magni-
tude at the low- and high-frequency limits of the frequency
sweeping method restricts it from high resolution applica-
tions. The frequency sweeping has to be carried out stepwise
in order to obtain the desired magnitude spectral profile for
selective excitation experiments. Recently, the single pulsed
excitation has regained its position in FT-ICR mass spec-
trometry.” The single pulse excitation, so-called “impulse
excitation” or “burst excitation,” gives flat amplitude re-
sponse from zero to a few MHz in the sample magnitude
spectrum. This is important for accurate determination of
the relative intensities of ions. However, the technique com-
pletely lacks the ability to excite ions selectively.

High mass selectivity and uniform excitation magnitude
spectra can be obtained by the stored waveform inverse
Fourier transform (SWIFT) excitation method introduced
by Marshall et a/.® In the SWIFT method, a desired excita-
tion magnitude spectral profile and the corresponding phase
function are specified. They are then subjected to inverse
Fourier transform to give the time-domain excitation wave-
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form. The waveform is converted into an analog signal
which is amplified and applied to the transmitter plates dif-
ferentially. Although the phase excitation is important for
two-dimensional (2D) FT-ICR experiments’ and for the
“jon-partitioning” experiments,® in most FT-ICR applica-
tions, the phase function is considered to be without physical
or chemical significance. However, the selection of a proper
phase function is quite important for practical reasons. For
broadband excitation, the power of the excitation signal is
concentrated in a short time duration if a constant or linear
phase function is used because of the phase coherence of all
the frequency components. This results in a sharp peak
(wave packet) with very high amplitude in the time-domain
waveform. The high amplitude of the sharp peak requires
not only large word length in the digital hardware for stor-
ing, transferring, and processing the time-domain data
(especially for digital to analog converters), but high dy-
namic range of the transmitting analog circuitry as well.” In
order to reduce the dynamic range, the phase coherence
must be destroyed. The simplest way to break the phase co-
herence is to scramble the phase in a random manner.® By
the “random phase scrambling” technique, a reduction of
one order of magnitude in the dynamic range is achieved.
However, phase scrambling also causes phase discontinuity
which may be responsible for the nonuniform excitation
power between the inverse Fourier transform frequency in-
tervals. Although some effort has been put into a search for
optimal phase functions, '° none has been found, at least in a
theoretical point of view, even for the simplest excitation
profile: a square magnitude spectrum. In this work, an algo-
rithm is proposed for the phase modulation problem. The
algorithm is based on the time shifting theorem and the un-
certainty principle of Fourier-analysis. The algorithm is
then used to show that the quadratic phase modulation,
which was found by trial-and-error to be superior to other
methods, '? is indeed the theoretically optimal phase modu-
lation for a square magnitude spectrum.

Il. GENERAL ALGORITHM

The inverse Fourier transformation of a broad-band
magnitude spectrum F(w) (within [@0r]) with a con-
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FIG. 1. (a) The effect of the uncertainty principle is illustrated for magni-
tude spectra F(w) with constant phase P(w) and its corresponding wave
packet. (b) The effect of the time shifting theorem with phase
P(@) = (a + bw) shows the wave-packet time shifted with a linear phase
function. Here a and & in the phase function are constants. “IFT” denotes
inverse Fourier transformation and the right-hand plots show the real part
of the corresponding time domain f{¢).

stant phase function P(w) gives a wave packet (within Ar)
in the time domain at ¢ = 0 (see Fig. 1). According to the
uncertainty principle of Fourier analysis,'' the product of
Aw (where Aw = o, — @,;) and At is a constant (At is the
time interval in which the highest power of the wave packet
is concentrated). If the phase is a linear function of frequen-
cy, the time shifting theorem of Fourier analysis'? states that
the wave packet shifts in the time dimension. The shifting
distance is determined by the slope of phase function.

The algorithm starts by dividing the broadband magni-
tude spectrum into n segments (see Fig. 2). Each segment
has the same area under the spectrum profile. Notice the
intervals (Aw,) of the segments generally are not equal. Ac-
cording to the analysis above, each of the segments generates
a small wave packet at ¢ = 0 and the whole time domain is
the superposition of all the wave packets if the phase is con-
stant for all the segments. If the wave packets are distributed
in such a way so that they do not overlap in the time limits
(between ¢t = 0 and ¢ = T), a reduction of about » times in
the dynamic range of the magnitude spectrum can be
achieved. The segment number n cannot be infinitely large
since when segments become small their wave packet width
increases and the overlap becomes inevitable.
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FIG. 2. The division of the frequency domain into segments with equal area
is illustrated where F(w) is the magnitude spectrum, P(w) is the phase
function, and S(w) is the integral of F(w).

For a square magnitude spectrum, the maximum value
of number n can be determined as shown in the following.
Since equal area spacing implies equal length spacing for a
constant profile, we can simply divide the magnitude spec-
trum from w, to @, with equally spaced grid elements (@, ,
@y, = @p, Where @, — o, =Aw, and nAw = o,

— w, ) into n equally spaced segments. By assuming that the
width of the wave packet At = a/Aw (Aw is the length of
magnitude spectrum segment / and a is a proportionality
constant) and all the wave packets completely cover the en-
tire time limits (7 = #At), the number » can be derived as

n=(Tw;—w)/a)"% (N

Before Eq. (1) can be used to estimate the degree of
reduction of the dynamic range, the parameter a has to be
chosen so that highest power of a wave packet is confined to
the time interval At. If a = 8, the amplitude of a wave pack-
et of a square magnitude spectrum outside At (a/Aw) drops
to about 14 times below its maximum. For a waveform of a
square magnitude spectrum with a 1 MHz bandwidth to be
transmitted in a time duration of 2 ms, a dynamic range
reduction of approximately 22 times can be achieved [from
the estimation provided by Eq. (1)].

In general cases in which magnitude spectra are not
square profiles, Eq. (1) gives the upper limit for the dynamic
range reduction since the maximum reduction in dynamic
range is expected for square magnitude spectra. For practi-
cal applications, the number r should be chosen to be less
than the value calculated from Eq. (1). Once n and Aw,
(i = 1,2,...,n) are determined, the parameter a can be calcu-
lated from a = T/(27_,1/Aw;). By using Af, = a/Aw;
(i = 1,2,...,n), the time interval Tbetweent =0and ¢t = T'is
divided into n intervals by 1, (¢, = Z*_,At, k=1,2,...,n).
Now, the task is to move the wave packet of the magnitude
spectrum segment k (in Aw, ) into the corresponding time
interval A¢,. This can be done according to the time shifting
theorem by choosing the slope of phase in the segment to be
equal to the time distance of shifting, ¢, :

k —
=Y At; = D) = Fut@n) (2)

i=1 © — 0y

Another consideration that should be taken is to assure
phase continuity at the boundaries of segments, that is where
P, ,(w,) = P, (w;). Therefore, the phase function in the
segment k can be expressed as

P (w)=P,_ (o) + 1 (w—w). (3)

Here P, _, (»,) is the upper-limit value of phase func-
tion from the segment k — 1. The upper-limit value
P, (w, , ) of this segment (k) can be calculated from Eq.
(3). In this way the whole phase function can be constructed
by the line segments if the initial phase P, (w,) is specified.

. QUADRATIC PHASE MODULATION

Now the above general algorithm can be applied to a
square magnitude spectrum which is the excitation profile
most commonly used in FT-ICR experiments. As discussed
above, the square magnitude spectrum from w,; to w, can be
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divided with an equally spaced grid (w,,0,,....00, = &f,
where w, ., — w; = Aw) into n equally spaced segments
and the time distance 7 can be divided into equally spaced
(At) intervals. Here n can be calculated from Eq. (1). Ap-
plying Eq. (3) to the upper-limit point &, ., of the kth
segment gives the following recurrence equation:

Plo, )=Plo,)+ kAt Ao. (4)
If P(w,) is set to zero, we have

K
Plw,) =Aw AtZi:At Aw k2/2.

i=1

Usingw, =, + kAv,n Ao =w, —w, and nAt =T
and dropping the subscript in @, the phase function at the
grid points is obtained:

P(w) = (0 — ;) T/2(0p — o). (5)

Although the equation is about the phase function at the
grid points, the conclusion can be expanded to all the points
in the frequency interval ( from w, to @, ) without introduc-
ing non-negligible error if the grid becomes sufficiently
dense. Notice that the phase function does not depend on the
number 7.

VI. CONCLUSIONS

We have developed a general algorithm to solve the
phase modulation problem in FT-ICR stored waveform in-
verse Fourier transform excitation. The algorithm, in gen-
eral, can be programed to generate phase functions for com-
plex magnitude excitation profiles. The degree of dynamic
range reduction can be easily estimated by Eq. (1). Applica-
tion of the algorithm to square magnitude excitation shows
that quadratic phase modulation is the theoretically optimal
modulation method.
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