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A new signal processing method has been proposed for generating optimal stored wave form
inverse Fourier transform (SWIFT') excitation signals used in Fourier transform mass
spectrometry. The excitation wave forms with desired flat excitation power can be obtained
by using the data processing steps which include: (1) smoothing of the specified

magnitude spectrum, (2) generation of the optimal phase function, and (3) inverse Fourier
transformation. In contrast to previously used procedures, no time domain wave form
apodization is necessary. The optimal phase functions can be expressed as an integration of
the specified power spectral profiles. This allows one not only to calculate optimal phase
functions in discrete data format, but also to obtain an analytical expression (in simple
magnitude spectral cases) that is for theoretical studies. A comparison is made of the
frequency sweeping or ‘“‘chirp” excitation and stored wave form inverse Fourier transform
(SWIFT) excitation. This shows that chirp excitation and SWIFT excitation with a

square magnitude spectrum and a quadratic phase are counterparts of the Fourier
transformation. Therefore, the results of theoretical work on chirp excitation can be used for
the analysis of the time domain excitation wave forms in the SWIFT technique.

I. INTRODUCTION

Fourier transform mass spectrometry (FT-ICR or
FTMS) is a powerful technique for mass analysis and for
the study of ion—molecule reactions. The principles and
applications of FT-ICR have been reviewed.! The most
important features are its capability of detecting all the
ions simultaneously and its power to manipulate trapped
ions. The excitation methods used for FT-ICR play a cen-
tral role for realization of these capabilities. The funda-
mental goal is to produce a wave form with the desired
excitation power spectrum (or magnitude spectrum). In
order to detect all the trapped ions, an excitation wave
form with a bandwidth of 3 orders of magnitude (from
kHz to MHz) has to be generated. The large bandwidth of
the excitation is a technically difficult problem. Several ex-
citation methods have been proposed and tested.> Among
them, frequency sweeping or ““chirp” excitation® is most
commonly used, although it neither provides flat excitation
power nor is convenient to use.

The stored wave form inverse Fourier transform
(SWIFT) excitation method introduced by Marshall et al?
has provided high mass selectivity and uniform excitation
power. In the SWIFT method, the desired excitation mag-
nitude spectral profile and the corresponding phase func-
tion are specified. They are then subjected to inverse Fou-
rier transformation to give the time domain excitation
wave form. In most experiments, magnitude spectra (mass
spectra) of ion transient signals are used to measure the ion
populations, and the phase portion of the frequency do-
main of the transient signal, which does not contain useful
chemical information, is discarded. This gives one the free-
dom to choose the phase function without concern for its
influence on the resulting mass spectra. The development
of the SWIFT excitation technique has focused on selec-

J. Chem. Phys. 92 (10), 15 May 1990

0021-9606/90/105841-06$03.00

tion of the proper phase functions to obtain more uniform
excitation power and reduce the dynamic range needed for
the time-domain excitation wave form. If a constant or a
linear phase function is used, a dynamic range problem
results because of the phase coherence of all the frequency
components. This results in a very sharp peak in the time-
domain excitation wave form that requires high dynamic
range digital and analog devices to generate and process
the excitation signals.* In order to reduce the dynamic
range, the phase coherence must be destroyed. Using “ran-
dom phase” is the simplest way to accomplish this, and it
reduces the needed dynamic range by a factor of 10.3 How-
ever, the excitation power of the wave form produced by
random phase randomly covers all the transmission time
period. This causes the power to leak outside the specified
time limits for the excitation wave form. The actual mag-
nitude spectrum becomes very nonuniform due to the un-
even Gibb’s effect’ By experimenting with different types of
phase functions, a “quadratic phase” function was found to
be superior to the random function.®

Recently, we described a general phase modulation
algorithm’ for generating excitation wave forms with de-
sired excitation magnitude spectra and reduced dynamic
range. We also demonstrated that a quadratic phase func-
tion is the theoretically optimal phase modulation for
square excitation spectra. Although the general algorithm
can be used to reduce the dynamic range, there are a few
problems with the algorithm. First, the area under power
spectral profiles (not magnitude spectra) should be used to
determine the time shift distance so that the excitation
power can be evenly distributed. The uniformity of the
resulting magnitude spectrum also remains unanswered.
Recently, Goodman has proposed a new method to gener-
ate SWIFT excitation wave forms.® By using the group
delay concept, optimal phase functions can be generated in
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a discrete data format that are similar to our general algo-
rithm. He further introduced expanded windows to accom-
modate the power leak (for all the group delay) at the
transitions. Although the method can produce optimal
time domain excitation wave forms for arbitrary excitation
power profiles, it requires three Fourier transform steps
and additional data processing steps that make the method
very complicated and time consuming.

In this paper, our previous work is extended to solve
the nonuniform excitation problem. A general analytical
expression for the optimal phase function is derived. A
signal processing algorithm is proposed to generate optimal
excitation wave forms with only one inverse Fourier trans-
form step. The most distinctive feature of the algorithm is
that no time domain wave form apodization is needed. The
Gibb’s effect commonly found in SWIFT excitation spectra
can be greatly suppressed by smoothing the specified mag-
nitude spectra. Comparison of the chirp and SWIFT meth-
ods shows that there are intrinsic relations between the
two. The profiles for time domain wave forms with square
magnitude spectra and quadratic phase are expressed in
term of Fresnel integrals from which the maximum dy-
namic range reduction can be estimated.

1. ANALYTICAL EXPRESSION FOR OPTIMAL PHASE
FUNCTIONS

We first consider how to generate a time-domain wave
form with a broadband magnitude spectrum [F(w) from
o] to wg] and distribute its power evenly in a time period
(from t, to t,). According to the analysis given in the
previous work,” the width of a wave packet dt is propor-
tional to the area under the power spectral profile,

dt=cG(w)dw,

where G(w) = | F(w) | and c is a proportionality constant.
Since the power spectrum has physical significance of
power density (volt?’/radian), the equation above can be
interpreted as distributing the power contribution in dw to
a time interval dt. Integration of the above equation gives

t—ty=c | Gdy. (1)

@g
Now, ¢ can be determined by taking the integration to
its limit
h—1
C=ml—.
Soy GOy

Substituting the above to Eq. (1) gives
H—t

= G

J oy GOy

Using the time shifting theorem [Eq.(2) in Ref. 7], the
differential equation for the optimal phase function is ob-
tained

f G)dy +
[20]
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dP(a)) L —1Y J“"
=t= G(y)dy + 1, (2)
do Gy Ja ’
Integration of the above equation gives the phase function
1 — [ @y
O B f f G(x)dxdy
“r“’o G(y)dy Juy Jag
+ to(w — wg) + Py (3)

The phase function contains three terms having dif-
ferent orders with respect to w. The first term, which is
second order in w, is responsible for spreading the excita-
tion power over a time period (¢, — t;). The second term,
which is first order in o, time shifts the wave form to the
time location between ¢, and ¢;. The third term is the initial
phase Py, and it does not change the structure of the wave
form. In the following, we can simply choose it to be zero.

lil. COMPARISON OF SWIFT AND CHIRP
EXCITATION

In this section, we establish the relation between
SWIFT excitation and frequency sweeping (or chirp) ex-
citation. We first consider how to synthesize a time domain
wave form with a square magnitude spectrum [F(w)] from
frequency 0 to Q

FO N O<w<ﬂ N
Flo)= 0, otherwise.

The power of the wave form is uniformly distributed over
a time period af) (or from t; to t; =, + aQ)). Using
Eq.(3) developed in last section, the optimal phase func-
tion can be written as

P(w) =aw?/2 + tywy + Py

The time-domain excitation wave form f(z) can be ex-
pressed as the Fourier transformation of the square mag-
nitude spectrum and above phase function:

Q
f(=(172m)F, f el Hew/2+ 1w + Po)l gl jolt = )] gy
0

(4)
The above equation can be rewritten as
8- .
f(t):FO/[Z\/(T]'a)]¢([) f v e[ﬂruz/Zl du
-7
=Fy/[2V(7a) |6()EB,y). (5)

Here ¢(1) = /P-720) 8 — 00/ J(ra), and y =
t/V(wa). The properties of the function E(8,7) have been
studied in detail.”

We can show that the above equation has the same
structure as Eq. (1) in Ref. 9, which has been shown to be
the frequency domain of a frequency sweeping wave form
(different in a constant factor). The similarity is not a
coincidence because a frequency sweeping or chirp wave
form has a square profile and a quadratic phase which
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FIG. 1. The relation between frequency sweeping or “chirp” excitation
and SWIFT excitation. A rectangular SWIFT magnitude spectrum (a)
with a quadratic phase produces a time-domain wave form (b) which has
the same profile as the magnitude spectrum (d) of a frequency sweeping
signal or chirp (c). Notice the frequency sweeping wave form has a
rectangular profile.

compares with the frequency domain of a square magni-
tude spectrum and a quadratic phase in the SWIFT exci-
tation (see Fig. 1). This allows us to use the analysis on
frequency sweeping excitation to the SWIFT technique
with careful handling.

Since the function ¢(#) in Eq.(5) is a phase factor, the
profile of the wave form is described by the function
E(B,y) . This statement can be expanded to more general
cases where the frequency range spans from o, to o; + Q
instead of from 0 to Q. The frequency shifting only con-
tributes a phase factor to ¢(t) and leaves E(f,7)
unchanged. Now we can use some of the properties to
estimate the dynamic range reduction.

V. DYNAMIC RANGE REDUCTION

The phase shifting algorithm developed in the previous
sections distributes the excitation power uniformly over the
time period of the excitation wave form. This is important
because it reduces the dynamic range required by the an-
alog and digital hardware that are used to generate the
excitation wave form.? In this section we present a method
for estimating the dynamic range reduction.

If there is no phase modulation or @ = 0, function (4)
reduces to the following expression:

5843
Q.

f(t)=Fo/2wf el dy  (Py=0),
0

which is a sinc function. The maximum of this function is
DRno modulation=F OQ/ 27

where DR, odulations the dynamic range with no phase
modulation, is evaluated at ¢ = 0. '

In the case of large phase modulation or S— o,
{E(ByY)| — V2 for v = B/2 (center of the wave form).
The maximum of E(f,y), located near ¥y = 1, is about
17% above the value at the center of the wave form. There-
fore, the dynamic range of the large modulated wave form
is given by

DRlarze modulation = L. 17F0/ (27a) 1/2'
We define a number n, the dynamic range reduction, as
the ratio of these two limiting cases

n=DR; mogulation’ DRlarge modulation = (Qa{}/2m) 2/1.17.

Since (1 is the frequency range or bandwidth and a{} is the
time period in which the excitation power is distributed, we
can rewrite the above equation as

n=[(or— o) T/27]*/1.17. (6)

Here T = aQandwyr — oy = Q.

Compared with the result from the previous work,
Eq.(6) gives a more accurate estimate for the dynamic
range reduction. In the previous work, interference
between wave-packets was not taken any consideration. In
other words, the wave-packets were considered to be inde-
pendent, and this results in an underestimation of the dy-
namic range reduction. Since Eq.(6) is derived from a
square magnitude spectral profile, it gives an estimation of
maximum dynamic range reduction for arbitrary magni-
tude spectral profiles.

V. ALGORITHM FOR GENERATING OPTIMAL WAVE
FORMS

Before a time-domain excitation wave form can be syn-
thesized, the desired excitation magnitude spectrum and
additional parameters have to be specified. These parame-
ters include the desired excitation resolution and the re-
quired dynamic range (DR,,). We first discuss the dy-
namic range problem. Once the excitation spectrum is
given, the maximum amplitude (dynamic range) of the
unmodulated wave form can be determined by integration
of the magnitude spectrum F(w) (all the frequency com-
ponents are added at t = 0):

@,

F
DRno modulation = 1/27 j F(w)do. @)

Qo

If the required dynamic range is DR, the minimum
time length T for distributing the excitation power can be
estimated from Eq.(6):

DR,o/DReq=n=[(0p— o) T/27]/?/1.17. (8)

In practical applications, T should be larger than the
value estimated from the above equation.
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The second problem, excitation resolution, results
from the fact that excitation wave forms used in FT-ICR
experiments are essentially band-limit signals. According
to the uncertainty principle of Fourier analysis, these wave
forms have to be transmitted in infinitely long time periods.
Most commonly used FT-ICR excitation profiles consist of
rectangular functions. Ideally, the transitions at the edges
of the “boxes” are vertical (or infinitely high resolution).
However, the excitation spectrum of the corresponding
wave form always contains Gibb’s oscillations near the dis-
continuity points if the wave form is transmitted in a time-
limit period. In actual experiments, however, the wave
form must be terminated after a finite transmission period.
Now the basic question is how to generate a time-Jimit
wave form having a magnitude spectrum that best approx-
imates the desired excitation profile. Although the time
shifting effect can be used to concentrate most of the exci-
tation power, a fraction of the excitation power still leaks
outside of the time period for distributing the excitation
power. With optimal phase modulation, the power leakage
decreases rapidly beyond the limits of the duration (T),
and the rate of the decrease in amplitude of the wave form
outside the time period (7) depends on the sharpness of
the transitions in the magnitude spectrum.

In real applications, the frequency resolution cannot be
infinitely high and the specified magnitude spectral profile
should reflect this fact. Since it is convenient to specify the
magnitude spectrum as a collection of square waves, addi-
tional data processing steps are required to smooth the
sharp edges of the square boxes. There are many ways to
smooth the sharp transitions; here we propose a very sim-
ple method. The original magnitude spectrum F(w) is
transformed to a new magnitude spectrum F;(w) by the
relation

1 (o+do?

Flo)=1~ F(y)dy. €

w— Aw/2

As shown in Fig. 2, this procedure removes the vertical
jumps in F(w) and produces continuous transitions in
Fi(w) over an interval Aw (the filter bandwidth). The
smoothing filter can be run many times to achieve the
desired degree of smoothness in the specified magnitude
spectrum. We should point out that this procedure may
not be an optimal one, although it is effective and very easy
to use. In fact, the algorithm proposed by Goodman® is
another smoothing procedure (IFT-window-FFT) in
which a low-pass filter is used for a specified magnitude
spectrum. Magnitude spectra can also be smoothed by
FFT-window-IFT procedures.

Once the resolution requirement is specified, the finite
time length of the wave form can be estimated. In the
algorithm proposed by Goodman,? the wave form is trun-
cated by a window within a time length T. Compensation
for the power leakage is provided by adding expanded win-
dows. However, these processes are not necessary since a
larger window, which includes the time duration T, can be
used initially. The time length of the “larger window” (de-
noted T, the real length of the wave form) can be deter-
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FIG. 2. The effect of the smoothing procedure on discontinuity points in
a magnitude spectral profile. Aw is the filter bandwidth.

mined by the resolution requirement. A detailed study has
shown that if the smooth filter {Eq.(9)] is run m times the
amplitude of the wave form decreases as 1/[(Aw/2)™
X "] outside the power distribution period (¢ denotes
the time distance from the limits of the excitation power
distribution period). For simplicity, we place the time pe-
riod T in the central region of T). If the smoothing filter
bandwidth is Aw and the wave form is truncated when its
amplitude drops 7 times below its maximum, the time dis-
tance, (T; — T)/2 (between the time limit of the wave
form to the boundaryof T) can be determined by using the
following relation:

T[TVZ /(m+1)

117X [2m(wp— 0;) 1Y (Aw/2)™

(r,-1)/2>
(10)

Here wr — wj is the frequency range, T is the time
period in which the excitation power is distributed, and m
is the number of the smoothing procedures performed. T
can thus be estimated from Eq.(10). If the parameter 7 is
sufficiently large, the time durations (7, — 7)/2 at each
end-point of T, provide sufficient space to accommodate
most power leakage from the distributing time limits (end
points of T).

After T, T, and F(®) are determined, the optimal
phase function can be calculated by using Eq.(3), and FFT
procedures can be used to synthesize the time domain wave
form from the specified magnitude spectrum and the opti-
mal phase function. The resulting wave form has nearly
uniform excitation power in a time period T in the central
region of wave form time duration T;. Outside of the pe-
riod T the profile of the wave form drops monotonically.
At the time limits of the wave form, the amplitude of the
wave form is almost zero. The Gibb’s oscillation in the
actual excitation spectrum is greatly suppressed by the
smoothing procedure. Therefore, no apodization of the
time-domain wave form is required since the wave form
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already has very small amplitude at the time limits. This
signal processing algorithm produces excitation wave
forms with specified dynamic range and frequency resolu-
tion.

Vi. AN EXAMPLE

To illustrate the algorithm developed above, we shall
synthesize a SWIFT excitation signal by following the
steps of the algorithm. The specified magnitude spectral
profile is shown in Fig. 3(a). The dynamic range of the
unmodulated wave form can be calculated by using Eq.(7)
and the parameters specified in Fig.3. This gives

DR,,=360(V).

If the required dynamic range is 30 V, the minimum time
duration (T) for distributing the excitation power can be
calculated from Eq.(8):

T=(1.17n)27n/ (w4 — ©,) =0.39 (ms)

Here, n = 360/30 and w4 — @ = 27X 512 kHz. For con-
venience, the value of T is chosen to be 0.5 ms (larger than
calculated).

The specified magnitude spectrum is subjected to the
smoothing procedure twice (m =2) [Eq.(9)]. The band-
width of the filter is chosen to be 5 kHz (Aw = 27w X5
kHz). The smoothed magnitude spectrum is shown in Fig.
3(b). Substituting Aw (27 X5 kHz), m (2), and o, — o,
(27 % 512 kHz) into Eq.(10) gives T equal to 0.91 ms if 5
is chosen to be 500. Since this is the minimum value, we
choose T, to be 1 ms. Now the task is to synthesize the
wave form that starts at t = 0 and ends at t = T and has
most of its power confined in the range from
to= (T —T)/2tot; = T; — t; The optimal phase func-
tion can be calculated from Eq.(3). Notice that the power
spectrum is used to generate the optimal phase function.
The phase function is shown in Fig. 3(c).

Inverse Fourier transformation (IFT) of the magni-
tude spectrum and the optimal phase function gives the
wave form with a duration of 1 ms (7)), as shown in Fig.
3(d). The time-domain wave form synthesized has a dy-
namic range of 31.4 V (base to peak). The “actual” mag-
nitude spectrum [Fig. 3(e)] of the wave form is obtained
by a forward FFT with one zero fill. Notice that this is
essentially the same as the smoothed magnitude spectrum
[Fig. 3(b)] and that the Gibb’s oscillations are absent.

VIl. CONCLUSON

We have developed a comprehensive method for gen-
erating optimal excitation wave forms for Fourier trans-
form mass spectrometry. The method involves fewer data
processing steps than the algorithm proposed previously by
Goodman. The dynamic range reduction can be estimated
more accurately. The intrinsic relations between SWIFT
and chirp excitation have been studied, and it has been
shown that the profiles for SWIFT wave forms with square
magnitude spectra and quadratic phases have the same
functional structure as the frequency domain of chirp sig-
nals. This means that they are counterparts of the Fourier
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FIG. 3. Hlustration of the new method for generating an optimal excita-
tion wave form from a desired magnitude spectrum and additional re-
quirements of dynamic range and frequency resolution. The frequencies
in the figure are w; = 27 X256 kHz, o, = 27X 500 kHz, w; = 27X 575
kHz, and w, = 27X 768 kHz. The excitation magnitude spectrum (volt-
age density) has a unit of mV/radian.

transformation. The well-known properties of chirp exci-
tation can be used for the analysis of the SWIFT technique.
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