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A smoothing method for generating optimal SWIFT (stored waveform inverse Fourier
transform) excitation waveforms used in Fourier transform mass spectrometry (FT-ICR or
FTMS) was previously proposed to substitute time-domain waveform apodization
procedures. This work gives a detailed analysis of the simple smoothing procedure. The effect
of the smoothing procedure on magnitude spectral edges can be easily expressed in

analytical format so that the frequency resolution of excitation can be easily analyzed. The
relation between the time domain apodization and the smoothing of magnitude spectra

in the frequency domain is established. This provides a convenient method to estimate the
time duration required for accommodation of excitation power leakage from the power
distribution limits. A method for generating nonconstant frequency resolution excitation

waveforms is proposed.

I. INTRODUCTION

Fourier transform techniques have revolutionized the
field of spectroscopy. A general scope of this area can be
found in a recent text.! Excitation methods play a very
important role in applications of the Fourier transform
mass spectrometry (FTMS) technique. The various exci-
tation methods used in Fourier transform mass spectrom-
etry have been discussed elsewhere.>® The stored wave-
form inverse Fourier transform (SWIFT) excitation
method introduced by Marshall ez al.*® has demonstrated
high mass selectivity and uniform excitation power which
are essential for high resolution MS/MS and for quantita-
tive experiments. In principle, the SWIFT method allows
one to generate a time-domain waveform with an arbi-
trarily desired excitation profile. This enhances the capa-
bility of Fourier transform mass spectrometry for ion ma-
nipulation.

In the SWIFT method, the desired excitation magni-
tude spectrum and an additional phase function are speci-
fied. The time-domain waveform is synthesized from the
magnitude and phase spectra by inverse Fourier transfor-
mation. The magnitudes of the responding ion signals (or
radii of the ion orbitals) are approximately proportional to
the excitation magnitude (or the magnitude spectrum).
The phase portion of the excitation waveform controls only
the relative phases among the ion signals which in most
applications have little physical significance. Therefore,
one can choose a phase function for synthesis of a SWIFT
excitation waveform to meet additional conditions. An op-
timal phase modulation algorithm for generating SWIFT
(stored waveform inverse Fourier transform) excitation
waveforms has been proposed previously’ to solve excita-
tion dynamic range and resolution problems. The central
idea in the algorithm is using the phase function to distrib-

ute the excitation power evenly in a limited time period.3
The excitation waveform with distributed power has re-
duced dynamic range and the power of excitation outside
the distribution power decreases monotonically. In the pre-
vious work? we showed for a waveform with a square mag-
nitude spectrum that the profile of the waveform outside of
the power-distributing time period decreases as 1/¢. If the
waveform is transmitted within a limited time duration,
the waveform is truncated and the power loss from the
truncation causes the Gibbs oscillations in the final excita-
tion spectrum. The power loss can be reduced by smooth-
ing the excitation magnitude spectrum before inverse Fou-
rier transformation. Therefore the Gibbs oscillations in the
final excitation profile can be greatly diminished. This
work provides detailed examination of the effect of the
smoothing filter on both magnitude spectra and resulting
time domain waveforms. A definition for the resolution of
FTMS excitation is proposed. The relation between the
smoothing procedure and time domain apodization is es-
tablished. The frequency resolution of the smoothing filter
is not limited to be constant. An example for using non-
constant frequency resolution excitation is given to dem-
onstrate the flexibility of the smoothing procedure.

{l. SMOOTHING FILTER AND ITS EFFECT ON
EXCITATION MAGNITUDE PROFILES

Desirable FTMS excitation spectra are essentially band
limited (nonzero over a finite frequency range). According
to the uncertainty principle of Fourier analysis, a band-
limited signal is unlimited in the time domain. Therefore in
principle, it is impossible to generate a time-limited excita-
tion waveform with a truly band-limited spectrum. The
task is how to produce time-limited waveforms with final
excitation spectra which are as close as possible to what is
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desired. One of the advantages of SWIFT excitation is high
frequency resolution. The high resolution implies sharp
transitions in excitation spectra. Because of the comple-
mentary nature of the Fourier transform, sharp variations
in the frequency domain result in slow changes in the cor-
responding time domain waveforms. Therefore a long time
duration is needed for accommodation of slowly changing
waveforms for high resolution applications. For conve-
nience, most commonly used FTMS excitation profiles
consist of magnitude-mode square wave spectral segments.
There are discontinuities at the edges of the square waves.
These discontinuities represent the infinitely high fre-
quency resolution which cannot be realized in real appli-
cations. A smoothing filter was proposed? to transform the
vertical edges into continuous transitions. The smoothing
filter is defined as

Aw/2
Fi(o) =1/(2Aw)

o — Aw/2

F(y)dy. (D

Here Aw is the filter bandwidth. The smoothed function
Fi (@) can also be expressed as convolution of the original
function F(w) and a rectangular function I, ,(w),

R = [" MupFo-ya, 2)
Here
1/Aw, —Aw/2<w<Aw/2
HA”(w)_l 0, otherwise ’ (3)

since most commonly used SWIFT excitation magnitude
spectra are a collection of square waves. We now examine
the effect of the filter on this type of function. Apparently,
the smoothing filter has no effect on the continuous part of
these excitation profiles. However, a large effect near the
discontinuous points is expected. For simplicity, we exam-
ine the effect on a step function

U Lo @>0 4
@=lo, w<o " )
If the bandwidth of the filter is Aw, the function U(w) is
transformed by the filter into

1, Aw/2 <o
Ui(o)={ (0o + Aw/2)/Ao, — Aw/2 <w<Aw/2 .
0, o< — Aw/2

(5)

The discontinuous point of the step function U(w) at
® = 0 now becomes a linear curve U;{w), over the interval
[ — Aw/2, Aw/2]. Although the smoothed function U(w)
has become continuous, its derivative dU, (w)/dw has two
discontinuous points at — Aw/2 and Aw/2. This disconti-
nuity can be further removed by running the filter for the
second time. The resulting functlon U,(w) is continuous in
its first derivative
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FIG. 1. Proposed definition
for excitation resolution. (a)
A step function U(w); (b) the
smoothed function U,(w),
notice that the function is af-
fected in the region Aw by the
filter and the excitation reso-

(b bwk— m=1]

90'/.I
107 L

S

(@ o e 'e M2 lton s defned s S nd
function, the resolution is dw,.
1, Aw<w
1— (0 — Aw)¥/2A0%,  O<w<Aw
Uy(@)= (0 + Aw)%/2A6%, —Aw<w<0’
0, o< — Aw

(6)

This process can go on to achieve any order of smoothness
for the excitation profile.

Although the term, excitation resolution, can be seen
quite often in the literature, there is no clear definition for
the improvement parameter for the FTMS excitation
waveforms. Here we propose a simple one and examine the
relation between the defined frequency resolution and the
filter bandwidth. A very simple definition for frequency
resolution (8w) is the frequency width needed for a tran-
sition from 10% to 90% of the full spectral magnitude.
Before the smoothing filter is performed, the magnitude
variations are “vertical”. This means that the frequency
resolution is zero (8wy = 0, in which the subscript denotes
the number of the filter performed). If the function is sub-
jected to the smoothing filter once (m = 1), it takes a du-
ration of 0.8 Aw for the transition from 10% to 90% of the
full level [Fig. 1(b)]. Therefore, the frequency resolution is
now equal to 0.8 Aw. If the function is smoothed twice
(m = 2), the frequency resolution can be derived from Eq.
(6) as 2(1-0.2'?) Aw (or 8w, = 1.106Aw) [see Fig. 1(c)].
Using the filter one more time only degrades the frequency
resolution (by this definition) by less than an additional
40%.

Ill. EFFECT OF THE SMOOTHING FILTER ON THE
TIME-DOMAIN WAVEFORM

A SWIFT excitation waveform f(¢) is synthesized
from a specified magnitude spectrum F(w) and a phase
spectrum P(w). The waveform f(¢) can be expressed from
the inverse Fourier transformation of F(®») and P(w),

1 ® ; .
f(t):-z-; f F(co)ejp("’)eﬂ‘"dw. (7)

In order to obtain a real time-domain waveform, F(w)
should be symmetrical about the origin and P(w) is anti-
symmetrical. In general, P(w) is a complicated function.
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Here only a simple case is given consideration, however the
conclusion from the analysis for the smoothing effect is
general.

We first consider synthesis of a waveform with a
square magnitude spectrum and zero phase [P(w) = 0].
The magnitude spectrum can be written as

, —Q<ow<)

Flo)= 0, otherwise

(8)
In this simplest case, the time-domain waveform is a sinc
function

f() =sin(Qt) /7 t. 9)

Since the function sin({}¢) is only a phase factor, the pro-
file of the waveform is described by 1/ t. This means that
the amplitude of the waveform decreases as the same
power of t. Now let us examine the effect of the smoothing
filter on the decreasing rate of the amplitude of the time-
domain waveform. The inverse Fourier transformation of
I, (@) [defined in Eq. (3)] is sin(Aw?/2)/mAwt. Accord-
ing to the convolution theorem of Fourier analysis, the
time-domain waveform or the inverse Fourier transforma-
tion of the smoothed F|(w) is equal to the product of the
individual inverse FT’s of F(w) and 11, ,(®@),

S1(8) = 27[sin(Awt/2) /mAwt]sin(Qt) /7 ¢.

Using the inductive method, one can prove the following
equation for any number of m (the number of filtering
processes performed):

Ful®) = sin(Qe)sin™(Awt/2)/[7(Awt/2)™].  (10)

The factor of sin (Q¢)sin™(Awt/2) in the above equation is
bounded within £1 and oscillates throughout the entire
time axis. Therefore the profile of f,,(¢) is described by the
function, 1/[(Awt/2)™m ] when ¢ is far from the origin.
Since the profile of the original waveform (a sinc function)
is 1/m¢ (|¢]|>0), the smooth filtering of m times on the
magnitude spectrum is equivalent to applying an apodiza-
tion function of 1/(Awt/2)™ to the time-domain wave-
form. It is not surprising that the filter has no effect on the
original waveform near the time origin (¢=0). In this
simple case, there is not phase modulation or no time shift.
However, it can be proved that the smoothing filter pro-
duces the same effect on phase-modulated cases.'®

The advantage of using the filter more than once can
be seen clearly here since the power leakage can be greatly
suppressed by the increasing orders of the “apodized func-
tion” without loss of large amount of resolution (see last
section).

IV. NONCONSTANT FREQUENCY RESOLUTION
EXCITATION

The bandwidth (Aw) of the smoothing filter does not
have to be a constant. This results in nonconstant fre-
quency resolution in the final excitation magnitude spec-
trum. Here, we present an example to demonstrate the
flexibility of the technique by using this property.

In general, the mass-to-charge ratio (m) is a compli-
cated function of the frequency (®),
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(11)

The frequency resolution (Aw) is related to the mass res-
olution (Am) with

Ao=Am/g (w). (12)

Here, g'(w) is the derivative of g(w). For simplicity, the
mass-to-charge ratio (m) of an ion is considered to be

m = g().

o)

FIG. 2. Constant mass resolution excitation. (a) The magnitude spec-
trum smoothed by the filter with a nonconstant frequency bandwidth
(Aw = aw?, a is a constant); (b) the corresponding mass spectrum [res-
caled from the magnitude spectrum (a)]; (c) the time-domain waveform;
and (d) the “true” mass spectrum obtained by one zero filling of the
waveform (c), FFT, and rescaling as (b). T, is the time length of the
waveform and T is the time duration in which the power of the excitation
is distributed (Ref. 2).
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inversely proportional to its resonance frequency (@) only
(m = a/w, a is a proportional constant). In this case,

Aowo=Amaw¥/a. (13)

If the mass resolution is constant (Am = const), the fre-
quency resolution (Aw) is proportional to the square of the
frequency. This relationship between mass resolution and
frequency resolution was first deduced by Comisarow and
Marshall.!!

The potential applications of this method include spon-
taneously selective excitation or(/and) ejection of isotopic
ions. Figure 2(a) shows the smoothed excitation magni-
tude spectrum with a constant mass resolution. Notice the
resolution at the lower frequency (w,) is about 14 times
higher than that at the higher frequency (w,). However,
the mass resolution in the corresponding mass spectrum
[Fig. 2(b)] is uniformly distributed (at
Amy=Am, ="' = Am,). The excitation time domain
waveform is shown in Fig. 2(c). Since the magnitude spec-
tral variation at w, in the magnitude spectrum is quite
sharp, it requires a long time duration (¢, — #;) to accom-
modate the power leakage from the limit of the power
distribution period (#;). In contrast, much shorter time
(t; — ;) is needed for a slow transition (at w;). Since
sufficient time periods are provided and at the limits of the
waveform the amplitude is near zero, the waveform has a
“true” mass spectrum [Fig. 2(d)] which is virtually the
same as was specified.

V. CONCLUSIONS

By analyzing the effect of magnitude spectral smooth-
ing, a frequency resolution for FTMS excitation is pro-

posed. It is hoped that this would provide a universal mea-
surement for FTMS excitation techniques. The application
of the smoothing filter to magnitude spectra has been
shown to be equivalent to apodization of 1/#" type of func-
tions to the corresponding waveforms. This provides an
analytical method to estimate the decreasing rate of ampli-
tude of waveforms. Therefore the time duration required
for accommodation of power leakage can be evaluated.
Finally an example for using nonconstant frequency reso-
lution excitation shows the unique capability of the
method.
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