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Prediction of a Space Charge Induced Upper 
Molecular Mass Limit Towards Achieving Unit 
Mass Resolution in Fourier Transform Ion 
Cyclotron Resonance Mass Spectrometry 
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Cyclotron phase locking arises when two ion clouds have similar mass-to-charge ratios and a sufkiently large ion 
population such that the relative cyclotron dynamics are dominated by the mutual Coulomb E x B drift dynamics. 
Once two or more ion clouds are phase locked, a Fourier transform ion cyclotron resonance mass spectrometer 
cannot distinguish them by image current detection since the ion clouds have identical detected cyclotron fre- 
quencies. A simple analytical model, based on the assumption of rigid ion clouds, predicts that the maximum 
number of ions having equal charge states and closely spaced masses, which can be contained in two clouds before 
phase locking occurs, is proportional to their mass difference and to the square of the magnetic field strength 
divided by the molecular mass, Am(B/M)', and is independent of the charge state. This molecular mass dependence 
establishes an upper molecular mass limit for resolving closely spaced peaks due to cyclotron phase locking. The 
rigid ion cloud model, supported by numerical simulations, demonstrates that phase locking causes the 1 Da 
spacing of the isotopic envelope for large molecules to be unresqlyable past a high molecular mass limit (M-J. 
M,, is directly proportional to B and independent of the charge state for adjacent ion clouds with equal charge 
state. An order of magnitude estimate predicts that M,, k: 1 x 104B (in units of Da and Tesla), independent of 
charge state for peaks having a 1 Da spacing. This estimate concurs with present instrumental capabilities. Full 
three-dimensional numerical simulations on realistic ion clouds, which include the combined effects of internal and 
external ion cloud dynamics, 2-oscillation, linear dipolar excitation and trap potential anharmonicity, demonstrate 
the qualitative validity of the assumptions inherent in the rigid ion cloud model predictions. 
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INTRODUCTION 

Among the most important applications of Fourier 
transform ion cyclotron resonance (FT-ICR) mass spec- 
trometry (MS) is its ability to weigh simultaneously the 
mass-to-charge (m/z) ratios of many different ionic 
species with high precision.lV2 Of recent significance is 
the capability of FT-ICR to determine the charge state 
of large multiply charged species arising from electro- 
spray ionization (ESI) by resolving the isotopic 
envelope at a nominal 1 Da or u For this 
situation, the molecular mass is determined unam- 
biguously, allowing a straightforward assignment of 
mass peaks in an otherwise complicated spectrum. This 
capability of FT-ICR has proven crucial in biological 
applications, especially for the correct interpretation of 
MS" of larger molecules by ESI.2-4 

If many different m/zs are simultaneously confined in 
the ICR trap,' Coulombic interactions among the ions 
may signscantly influence the instrumental per- 
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formance. These space charge effects include position- 
dependent frequency shifts, mode amplitude and 
frequency modulations, and phase locking.6-' For high 
ion density experiments, diocotron and collective fluid 
modes are important.' 4-' Imperfect electrostatic and 
magnetic fields, specifically trap potential anharmoni- 
city and magnetic field inhomogeneity, introduce ion 
position-dependent detected cyclotron frequencies. 

The central purpose of this paper is to demonstrate 
that cyclotron phase locking due to Coulombic inter- 
actions sets a maximum molecular mass limit in 
FT-ICR mass spectrometers for achieving unit mass 
resolution under most practical conditions. This molec- 
ular mass limit is directly proportional to magnetic field 
and independent of charge state for two masses which 
are adjacent isotopes belonging to the same charge 
state. One should not confuse the molecular mass limit 
described here with the well known critical m/z trap 
limit,5 which is a single ion property not related to Cou- 
lombic interactions (although the radial space charge 
electric field may modify the m/z trap limit), and also 
note that other factors can conspire to prevent the 
phase locking molecular mass limit discussed here from 
being recognized. 
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Phase locking of cyclotron modes 

Phase locking of the cyclotron modes for two ion 
clouds results when the relative cyclotron dynamics are 
dominated by the mutual E x B drift dynamics, where 
E is the Coulomb electric field (an ion cloud is defined 
here as a coherently moving ion ensemble of the same 
mass and charge). If the ion clouds are not phase 
locked, then the two clouds move in individual cyclo- 
tron orbits with two distinct cyclotron frequencies. For 
the situation where Coulomb interactions are negligible, 
the difference in cyclotron frequency is Am, = B I ql /ml  
- q2/m2 I and the relative velocity is Am, R, ,  where B, 
R, ,  q and m are the magnetic field, cyclotron radius, 
ionic charge and mass, respectively. Each ion cloud 
receives an additional cyclotron velocity perturbation 
equal to vd = -(E x B)/B2 due to the Coulomb electric 
field between ion clouds." Under most conditions, the 
net effect of 0, is to introduce a slight modulation in the 
otherwise circular cyclotron orbit with period - Amc-' 
and to shift the cloud's frequencies. As the number of 
ions increases, the modulation amplitudes increase up 
to the point where the ion clouds undergo cyclotron 
phase locking. Thereafter, the ion clouds have the same 
detected cyclotron frequencies and are indistinguishable 
in a mass spectrum by image current detection of the 
cyclotron modes. Cyclotron phase locking is an experi- 
mental reality, having been reported in a number of 

In order to understand the origin of cyclotron phase 
locking, consider first the simple model of two unexcited 
(R,  = 0) line charges (zero radii charged cylinders) 
which are separated by a distance s. It is easy to see that 
for this situation the line charges rotate about each 
other due to E x B drift with a frequency = E/sB. 
Now, if the Coulombically interacting line charges with 
cyclotron frequency difference Am, are excited to coher- 
ent cyclotron radii R, ,  there is a competition between 
the Coulomb E x B drift and relative cyclotron motion. 
The E x B drift locks the line charges together while the 
relative cyclotron motion keeps them apart. An estimate 
of the locking condition valid for R, % s is provided by 
equating the time required for the ion clouds to pass 
each other due to their relative cyclotron motion (q,J 
with the time required to complete one rotation period 
due to E x B drift (?d).'o'll If r d  > zrel, the ion clouds 
rotate in perturbed (modulated) cyclotron orbits with 
sfightly shifted cyclotron frequencies. However, if r d  < 
qel, then the line charges may lock cyclotron modes. 

Recently, we have studied phase locking in detail and 
have shown that the model of two interacting line 
charges can be extended to two initially overlapping 
charged cylinders by replacing the separation distance s 
by an effective separation distance serf which is pro- 
portional to the ion cloud radius.'' In particular, two 
infinitely long charged cylinders with cloud radii p, , 
cyclotron radii R, , which are initially overlapping are 
phase locked if their cyclotron frequency difference 
satisfies the equation (all numbered equations are in 
MKS units) 

where E,, = 8.85 x lo-'' F m-' is the vacuum permit- 
tivity and Ntq j  is the total charge contained in a length 
of the jth cyhnder L m long. As an approximation valid 
for long cylindrical ion clouds (neglecting edge effects), 
N j q j  is the total charge contained in the jth ion cloud 
whose length L % p, .  Our earlier work derives self z 
1 . 0 4 ~ ~  for cylindrical ion clouds by parameterization of 
Eqn (1) with numerical simulations." Equation (1) is 
accurate assuming R,  % pc . Good agreement is found" 
between predictions of Eqn (l), numerical simulations 
and previously published experimental data. 

An interesting situation occurs if instead of cyclotron 
phase locking, the locking of magnetron modes is con- 
sidered. One arrives at an identical expression for the 
magnetron locking condition as Eqn (1) with Am, 
replaced by the difference in magnetron frequency 
between the two clouds Am-.  Since Am- is virtually 
independent of m/z, one concludes immediately that for 
pure coherent magnetron motion (no coherent cyclo- 
tron motion) only a modest space charge electric field is 
required to lock the magnetron modes of all mlzs, 
resulting in a single collective magnetron mode with the 
same magnetron frequency for all m/zs. 

RESULTS AND DISCUSSION 

An important prediction of Eqn (1) occurs when q1 = 
q2 = q (e.g. same charge state). Since Aw, and the space 
charge induced E x B drift are both directly pro- 
portional to q in this case, Eqn (1) predicts that the 
phase locking threshold is independent of the charge of 
the ion when the two ion clouds have the same charge 
state. This prediction may be understood simply by 
considering that as q increases then Am, increases. At 
first glance, an increase in Am, makes phase locking less 
likely to occur; however, this increase is exactly com- 
pensated by a corresponding increase in the Coulomb 
electric field, which makes phase locking more likely to 
occur. Therefore, the phase locking threshold is inde- 
pendent of the charge state if the two ion clouds have 
equal charge state ions. 

Recently, we have studied phase locking in two ion 
clouds which have either cylindrical or spherical 
shape.'' Comparison with previously published experi- 
mental data demonstrates that the cylindrical ion cloud 
model predicted phase locking thresholds in reasonable 
agreement with experiment. Furthermore, spherical ion 
clouds are more likely to lock cyclotron modes than 
long cylindrical clouds with equal cloud radii and total 
number of ions. For this situation, the number density 
of the spherical ion clouds is larger by 0.75(L/pc) % 1 
the density in the cylindrical clouds. Therefore, absolute 
(best case) limits are established with cylindrical ion 
clouds. Detailed results are presented here for cylin- 
drical ion clouds. Final results are also given for spher- 
ically shaped ion clouds, without proof, in order to 
compare with predictions based on cylindrical clouds." 

If Eqn (1) is satisfied, then the two charged cylinders 
do not separate into two independent cyclotron modes, 
but instead evolve with a single collective cyclotron fre- 
quency and a collective relative E x B drift frequency. 
At phase locking the E x B drift entrains one ion cloud 
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to the second ion cloud. If two ion clouds with different 
m/z are phase locked, an FT-ICR mass spectrometer 
cannot resolve the two mass peaks since the perturbed 
cyclotron frequencies, which are the measured quan- 
tities, are identical at phase locking. 

Now, consider two cylindrical ion clouds composed 
of ions with the same charge state (ql = q2),  separated 
by a small mass difference Am = I m, - m2 1, and with 
mi x m2 x m p Am. For these limits, Eqn (1) predicts 
that the maximum total number of ions N,,, = N ,  
+ N ,  before the two clouds phase lock is 

N,,  predicted by Eqn (2) compares well with numerical 
simulations of the exact equations of motion and with 
previously published experimental data." An important 
prediction of Eqn (2) is that N,,, is independent of the 
relative abundance of ions in each cloud. This is 
actually an approximation which is valid provided that 
R,  + P C .  

Two different research groups have carried out 
experiments estimating the number of ions required to 
lock cyclotron Diagnostics are not currently 
employed by the ICR community to measure accurately 
the ion cloud geometry and number and 
therefore we have to make some approximations when 
comparing Eqn (2) with available experimental data. 
The ion cloud is assumed to extend the entire length of 
the ICR trap such that L equals the trap length. In 
addition, the cloud radius p, x 0.1 cm is chosen to be 
equal to a typical value for the radius of the ionizing 
electron beam or beam of externally generated ions. 

Naito and Inoue' have investigated cyclotron phase 
locking experimentally with CO' (mi 27.9949 u) and 
C2H4+ (m2 28.0313 u) with the ratio N,:N, = 
0.38: 0.62, cyclotron radius R, = 1 cm, magnetic field 
B = 1 Tesla (T) and trap length 3.3 cm, determining 
that a minimum of - 1 x lo6 ions is required to lock 
cyclotron modes with these conditions. Putting B = 1 
T, m = 28 u, Am = 0.036 u, R,  = 1 cm, L = 3.3 cm and 
pc = 0.1 cm in Eqn (2), we predict N,,, = 1.7 x lo6 
ions. 

In addition, Huang et a1.l' have measured the 
number of ions required to lock cyclotron modes in 
experiments with CO' (m, 27.9949 u) and N,+ (m2 
28.0056 u) measured in two different relative abun- 
dances, namely, equal relative abundance and N ,  : N ,  in 
the ratio 0.28 : 0.72. Their experiments find that N,,, w 
(1 i- 0.3) x lo6 ions for both relative abundances.I2 
These experiments were carried out with a 0.7 T mag- 
netic field and a 5 cm long ICR trap. The post- 
excitation cyclotron radius was not reported. With 
B = 0.7 T, m = 28 u, Am = 0.011 u, L = 5 cm, R,  = 1 
cm and pc = 0.1 cm in Eqn (2), we predict N,,, = 0.4 
x lo6 ions. The predictions of Eqn (2) compare reason- 
ably well with available data (remember that pc and R, 
were not measured and no attempt was made here to 
'fit' Eqn (2) to the data). 

On the other hand, the theoretical point charge 
model of Naito and Inoue' (NI) makes predictions 
which break down in either the limit that one ion cloud 
has a relative abundance much greater than the other 

ion cloud (N,,, approaches infinity) or that the ion 
clouds have equal relative abundance (N,,, is too 
small). For example, using the parameters above for the 
data of Huang et ~ l . , ' ~  the NI model predicts N,,, = 
0.4 x lo6 ions when N ,  : N ,  = 0.28:0.72; however, the 
NI model predicts incorrectly N,,, = 0.001 ions when 
N ,  and N ,  are equally abundant. Experimentally," the 
number of ions required to lock modes is not too sensi- 
tive of the relative abundance of ions, in agreement with 
Eqn (2). We present numerical simulations and addi- 
tional analytical theory which demonstrate that N,,, is 
nearly independent of the relative abundance of ions in 
each cloud as long as the cyclotron radius is much 
greater than the ion cloud radius. In addition, the phase 
locking condition predicted by the NI model does not 
take into account the initial separation distance 
between point charges (or the cloud radius for finite 
sized ion clouds). Recent numerical simulations and 
analytical theory demonstrate that the phase locking 
condition for two point charges strongly depends on the 
initial separation distance." Nonetheless, there are two 
important predictions of the NI model which are in 
agreement with our work. Both Eqn (2) and the NI 
model predict the same magnetic field dependence and 
charge independence of the phase locking threshold 
when the charge states are equal. 

Upper molecular mass limit due to cyclotron phase 
locking 

An expression equivalent to Eqn (2) for the phase 
locking threshold is alternatively obtained by solving 
for the maximum molecular mass (M,,,) of the ions 
before phase locking occurs 

M,,, x 3.2B (3) 

where Nave = ( N ,  + N2)/2 is the average number of ions 
in two adjacent ion clouds. For an isotopic distribution, 
Nave is the average of the number of ions in the most 
abundant isotope peak and its most abundant imme- 
diate neighbor. 

The important prediction from this analysis is the 
existence of a high molecular mass limit in the ability of 
FT-ICR to weigh simultaneously masses separated by 
Am. If Am = 1 u, then M,,, is the high molecular mass 
limit towards achieving 1 u resolution. The depen- 
dences on R , ,  Am, m, B and number of ions predicted 
by Eqns (2) and (3) are not an artifact of our use of 
cylindrical ion clouds since similar derivations employ- 
ing spherical ion clouds, line charges or point charges 
yield the same dependences. l 1  

Using reasonable ICR experimental parameters, 
L = 5 cm, R, = 1 cm, p, = 0.1 cm and Nave = 250, with 
Am = 1 u, then Eqn (3) yields M,,, % 1 x 104B (units in 
u and T). This order of magnitude estimate is consis- 
tent with available experimental information. For 
example, the highest reported molecular mass ions 
with barely resolved 1 u separated mass peaks are 
-67 x lo3 Da (porcine serum albumin) using a B = 6.2 
T FT-ICR mass spe~trometer.~ Similar isotopic 
resolution for albumin has been obtained in our labor- 
atory with a 7 T instrument. Reducing Nave from 250 to 
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100 ions increases M,,, by a factor of 1.6. The most 
important prediction of Eqn (3) is that M,,,, for ions 
belonging to the same charge state, is independent of 
the charge and directly proportional to B. It must be 
remembered that this prediction only relates to the best 
achievable resolution, and that other experimental 
considerations" (related to observation time of coher- 
ent cyclotron motion and cyclotron frequency drifting 
during detection) may prevent this performance from 
being realized. However, if M,,, is exceeded, then the 
isotopic envelope is unresolvable by image charge 
detection, regardless of other experimental parameters 
and instrumental performance. 

We should point out that under typical ESI condi- 
tions, the maximum molecular mass limit, M,,, , 
described here is more relevant than the well known 
critical m/z trap limit.5 The critical m/z trap limit 
(m/zcril) is a single ion property which is widely used as 
a figure of merit for particular ICR trap geometries. In 
general, the radial Coulombic electric field modifies 
m/zC,, . An ion whose m/z exceeds m/zcri, is not confined 
at all. Specifically, m/z,,, is dependent on the trap 
potential harmonicity and magnetic field by the relation 
m/z,,, = B2/4r, where r is determined for any trap 
geometry by an expansion of the trap potential QIrap 

about the trap's geometric center, along the trap z-axis 
(i.e. (DIrap(z) w constant + Tzz + * . .). For a trap of 
width d, potential on the end-caps (plates or rings) 
with ground on all other electrodes, m/zcri, = 
B2d2/(4~Dz),  where D, is a dimensionless coefficient. As 
a common example, a 5 cm cubic ICR trap (D, = 
2.7737), with V, = 1 in a 3 T magnetic field, has 
m/zcrit = 2 x lo5 u. In contrast, mmaX w 1 x io4B w 3 
x lo4 Da, using the parameters given above. Therefore, 
for multiply charged species, which are the norm for 
high molecular mass (though relatively low m/z) ions 
generated by electrospray, m/zcril is easily avoided 
and controllable (e.g. lower V, or different trap 
ge~met ry~ . '~ ) ;  however, since M,,, is charge indepen- 
dent, this is the crucial limit for ESI applications. 

It is possible to put Eqn (3) into a form which does 
not depend on the ion cloud geometry. Substituting the 
average number density, defined as a,, = Nave/xPCZL, 
into Eqn (3) yields 

eORc Am J P c  nave 
M m a x  x gB (4) 

where g is a dimensionless constant dependent on the 
ion cloud geometry. In particular, g = 1.8 for infinitely 
long cylindrical clouds and g = 3.3 for spherical ion 
clouds (note that nave = 3NaVe/4spc3 for spherical 
clouds)." 

It is interesting to compare M,,, for long cylindrical 
ion clouds with spherical clouds which have the same 
radius and total number of ions. For this situation, 

for a 0.1 cm radius spherical ion cloud is -0.3M,, for 
a 5 cm long cylindrical cloud with the same radius and 
number of ions as the spherical cloud 

Compressing the ion cloud decreases M,, as the 
inverse square root of the number density. While 
increasing the number density has the substantial 
benefit of increasing the stability of the coherent cyclo- 

Msphere - - ~ ( J ~ , / L ) O - ~ M ~ , .  As a typical example, M,, 

tron motion,' it also increases the likelihood of cyclo- 
tron phase locking, for the same reason. The maximum 
density that an ion distribution consisting of a single 
m/z can be compressed to is set by the Brillouin density 
limitlg (nB = q,BZ/2m). The Brillouin limit combined 
with Eqn (4) determines the smallest value of M,,, as a 
result of compressing the ion cloud to its maximum 
density. As an example, consider an experiment where 
two closely spaced masses m 9 Am are confined, then 
Eqn (4) with nave = nB/2 reduces to M,,, = 4g2Am 
(RJp,). With Am = 1 u, Rc/pc = 10, then M,,, is just 
130 and 435 u for cylindrical and spherical clouds, 
respectively, which have been compressed to their 
maximum density. It is clear that an ion cloud consist- 
ing of two close spaced masses should not be com- 
pressed to its Brillouin limit for high molecular mass 
applications. 

Isobaric masses and adjacent charge states 

In reality, many charge states are simultaneously 
present and, furthermore, the isotope peaks within each 
charge state can be composed of many isobaric masses 
whose spacing is Am 4 1 u. A hierarchy of different Am 
and Az values is the normal occurrence in most ESI 
applications. The high molecular mass limit for resolv- 
ing isobaric masses within a single isotope peak is 
simply Eqn (3) or (4) with Am equal to the mass differ- 
ence between two adjacent isobaric masses of interest. 
For example, if the isobaric masses are separated by 
Am = 0.001 u in an FT-ICR mass spectrometer with 
B = 3 T, R, = 1 cm, L = 5 cm, pc = 0.1 cm and N,,, = 
1000 ions, then Eqn (3) predicts that these isobaric 
masses are unresolvable for molecular mass species 
exceeding M,,, w 500 u. This upper estimate is in 
keeping with experimental trends which have resolved 
isobaric mass peaks for singly charged ions at m/z 269 
separated by Am = 0.0011 u.I3 

While the isotopic envelope of one charge state may 
not always be resolvable in an ESI mass spectrum, the 
charge states are much easier to resolve at a Az = 1 
spacing. Provided that the cyclotron frequency differ- 
ence between two adjacent charge states is greater than 
the cyclotron frequency width of a single charge state's 
isotopic envelope (so that the isotopes of neighboring 
charge states are not overlapping), then Eqn (1) can be 
used to predict the maximum charge (zmax) before phase 
locking occurs between two cylindrical ion clouds 
which have the same mass m but different z. With m, = 
mz = m and z1 w z2 E z B Az, where Az = lzl - zzl in 
Eqn (l), we obtain 

(5) 

where z,,, is the upper z limit towards resolving two 
adjacent charge states whose masses are equal. As an 
example, let Az = 1, Nave = 250, L = 5 cm, R, = 1 cm, 
p ,  = 0.1 cm and m/z = 1500 u; then z,, E 300B. Since 
m/z = 1500 u (a value chosen as a typical m/z for large 
biopolymer ions generated by ESI), then m = 
1500z,,, x 45 x 104B (tesla) is the corresponding high 
molecular mass limit towards separating these adjacent 
charge states. 
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Numerical simulations of phase locking in two or more 
rigid ion clouds 

Numerical simulations with two or more Coulombically 
interacting rigid ion clouds are used to test further the 
predictions of Eqn (2)  [Eqn (3) is equivalent to Eqn (2)].  
Every different m/z is modeled as a uniform charge 
density infinitely long cylinder aligned parallel to the 
homogeneous magnetic field B&. A cylindrical ion cloud 
is perhaps the simplest model for cloud geometry 
capable of yielding semi-quantitative agreement with 
experiment to many important space charge effects 
including frequency shifts and cyclotron phase 
locking.'' Each ion cloud (charged cylinder) has a 
radius p c ,  and is allowed to interact with the Coulomb 
electric field from all other ion clouds in addition to the 
magnetic field and any externally applied electric fields. 
The dynamics of each ion cloud in the xy plane is 
solved by numerical integration of the equations of 
motion. The full three-dimensional simulation of realis- 
tic deformable ion clouds is carried out in later sections. 

For a single ion (or the center position of an ion 
cloud), the magnetron and cyclotron motions in the 
quadrupole approximation can be separated from each 
other. The cyclotron and magnetron position vectors r +  
and r-  for a single ion in the presence of a perturbing 
force F are given by the dynamic equation1' 

The ion's position in the xy plane is r = r,  + r -  . These 
equations reduce to the quadrupole approximation (i.e. 
an ion in an azimuthally symmetric quadratic electro- 
static potential proportional to 22' - r2 and a homoge- 
neous magnetic field) when F = 0. When F = 0, r +  and 
r- are constant magnitude vectors rotating in the direc- 
tion which is left-hand circular, with respect to the mag- 
netic field, with frequencies equal to w ,  and w- , 
respectively. For the purpose of this work, it is conve- 
nient to combine the electric field derived from the 
quadrupolar trap potential with F, then Eqn (6) sim- 
plifies to 

dr,J = (w,j,c, - 2) x 2 
dt 

for the cyclotron position vector (wcj = qjB/mj) and 

for the magnetron (or guiding center) position vector, 
where El is the sum of the space charge eIectric field due 
to all other ion clouds and any externally applied elec- 
tric field (e.g. excitation or trap electric fields) acting on 
the jth ion cloud. One should observe that if El in Eqn 
(7) includes the trap electric field then Eqn (7) is exact, 
being just an alternative set of coordinates to either Eqn 
(6) or the familiar Newton equation of motion with 
Lorentz force. The entire system of simultaneous first- 
order differential equations (4 x number of ion clouds) 
is integrated including explicitly the Coulomb inter- 
action. The Coulomb electric field between cylindrical 
ion clouds whose centers are separated by distance rij is 

chosen such that the electric field is zero for complete 
overlap (iij = 0), increases linearly with separation dis- 
tance up to the point where the ions clouds are just 
touching (at i i j  = 2pc), then follows the usual line charge 
electric field dependence when the cylinders are com- 
pletely separated (rij > 2pJ. This form of interaction 
electric field is most accurate for uniform charge density 
cylinders. Further details and discussion of this pro- 
cedure are presented elsewhere." 

Each cloud's center position in the xy  plane is rl = rcl 
+ rmj, the sum of the cyclotron and magnetron position 
vectors. In order to integrate Eqn (7), a choice must be 
made for the coordinate representation of the cyclotron 
and magnetron position vectors. Cartesian coordinates 
are used for the magnetron position. However, two dif- 
ferent representations are used here for the cyclotron 
position, either Cartesian or amplitude-phase (polar) 
coordinates, depending on the particular application. 
For problems where the initial cyclotron radius is zero, 
the equations of motion in Cartesian form are more 
appropriate. The amplitude-phase form of the equa- 
tions of motion have a singularity in the phase equation 
at zero cyclotron radius and, therefore, are not easily 
applied to that situation. On the other hand, for prob- 
lems where the initial cyclotron radius is not zero (e.g. 
after excitation), the amplitude-phase equations have a 
number of advantages including an accurate method for 
determining small changes in cyclotron frequency due 
to perturbations since the cyclotron phase is directly 
evaluated. With this numerical method the perturbed 
cyclotron frequency (wCj + Amcj, where Amcj is the fre- 
quency shift due to Coulomb interactions) is easily cal- 
culated for each ion cloud." Phase locking between 
two ion clouds occurs when their perturbed cyclotron 
frequencies are equal. Both representations are 
described in detail elsewhere." 

If the magnetron and cyclotron equations of motion 
are both in Cartesian coordinates, the equations of 
motion are integrated by second-order central difference 
approximations. For example, the magnetron equation 
of motion dr,(t)/dt = E,(t)/B x 4 is approximated by 
[rmj(t + st) - rm,(t - 6t)]/26t = E,(t)/B x 4, where 6r is 
the time step. This algorithm is stable for a sufficiently 
small time step and exhibits the time centering property 
which is important for good conservation of energy and 
angular momentum. As a partial test, the cyclotron 
motion of a single m/z 28 ion with a 1 cm cyclotron 
radius in a 1 T magnetic field was integrated for lo5 
cyclotron periods. With a time step equal to 1/300 of a 
cyclotron period, the cyclotron radius remained con- 
stant to within 1 x lop3. Using a time step six times 
larger, the cyclotron radius remained constant to within 
5 x In cases where the cyclotron equation of 
motion is in amplitude-phase representation, the 
employed numerical integration method is the same as 
described in our earlier work." 

Rotating frame cloud trajectories 

In order to depict the various kinds of dynamics that 
two Coulombically interacting ion clouds undergo as 
the ion population increases to the point of phase 
locking, we have carried out a number of numerical 
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simulations with realistic conditions and made movies 
of their trajectories in different frames of reference. The 
most appropriate is the frame rotating with the average 
cyclotron frequency of the two clouds. To accomplish 
this, Eqn (7) is first numerically integrated in the labor- 
atory frame, then the laboratory frame trajectories are 
simply transformed to the rotating frame. The rotating 
frame representation of ICR trajectories has previously 
been employed in a study of single ion motion during 
linear dipolar excitation.'' The parameters used in 
these first simulations are chosen to approximate the 
experimental conditions of Naito and Inoue.8 Two 
cylindrical ion clouds ( p ,  = 0.1 cm, L = 3.3 cm), q ,  = 
q, = e, m, = 27.9949 u, m, = 28.0313 u, in a 1 T mag- 
netic field are excited to a cyclotron radius of 1.0 cm by 
chirp excitation. The excitation frequency is downswept 
from 600 to 500 kHz in 150 p s  with a maximum excita- 
tion electric field of 760 V m-l. These excitation condi- 
tions give a post-excitation cyclotron radius of 1.00 cm 
for both ion clouds when Coulomb interactions are 
neglected, and no magnetron motion is excited. After 
excitation, the trajectory of each cloud is followed for 
3.6 ms (about 2000 cyclotron periods). Since the ion 
clouds start at the origin, the Cartesian coordinate rep- 
resentation of Eqn (7) is chosen for these particular 
numerical simulations. 

Figure 1 presents cloud trajectories (centers of each 
cloud) in the frame of reference rotating with the 
average unperturbed cyclotron frequency, (ac1 + wJ2 
for the two cylindrical ion clouds described above. Since 
the difference in unperturbed cyclotron frequency (712 
Hz) is much smaller than the average cyclotron fre- 

1 t 

Figure 1. Post-excitation ion cloud trajectories in the xy plane, 
before and after cyclotron phase locking, in the frame of reference 
rotating with the average unperturbed cyclotron frequency. The 
faster ( m i )  and slower (mz) cloud center positions are plotted as 
solid and broken lines, respectively. The ion clouds have equal 
relative abundances. The axes are rotating frame coordinates. Four 
different ion populations are indicated: (a) 1 x loh, (b) 1 x lo8, 
(c) 1.5 x 1 O8 and (d) 1.8 x 1 O8 ions. The ion clouds are phase 
locked at 1.8 x 10' ions. Parameters are 8 = 1 T, m, = 27.9949, 
m,=28.0313, q,  = q 2 = e ,  L = 3 . 3  cm and p,=O.l cm. The ion 
clouds start initially overlapping at the trap center, then are excited 
by frequency sweep dipolar excitation from 600 to 500 kHz in 150 
,xi with an excitation electric field amplitude of 760 V m-' (or 
1520 V,, m-'). These trajectories result from numerical integration 
of Eqn (7) by central differences for -.- 2000 cyclotron periods 
using a constant time step of -.- 1 /300 of a cyclotron period. 

quency (- 550 kHz), the frame rotating with the average 
cyclotron frequency is most appropriate for discerning 
features of the cloud trajectory arising from Coulombic 
effects between ion clouds. The ion clouds initially start 
with their centers at the trap origin, then are excited by 
chirp excitation to a coherent radius of - 1 cm. Only 
the post-excitation trajectory is plotted. Each box in 
Fig. 1 measures 3.5 cm across with the origin at the 
center. Each cloud has the same relative abundance and 
Fig. l(a)-(d) depict post-excitation trajectories for four 
different simulation runs with the total number of ions 
increasing from 1 x lo5 to 1.8 x lo6 ions. The higher 
cyclotron frequency ion cloud (ml) and lower cyclotron 
frequency cloud (m,) are plotted as solid and broken 
lines, respectively. The arrows within each figure depict 
the direction which the clouds follow through time. 

If Coulomb interactions are neglected, then the tra- 
jectories in this rotating frame are coincident circles 
with radii equal to the constant cyclotron radius (1 cm). 
The relative directions of the ion trajectories are left- 
and right-hand circular, with respect to the magnetic 
field (which is orthogonal to the plane of the figure), for 
the faster (m,) and slower (m,) ion clouds, respectively. 
As Coulomb interactions become increasingly impor- 
tant, the trajectories begin to distort from the unper- 
turbed circular orbit in the rotating frame. Figure l(a) 
demonstrates that for 1 x lo5 ions the trajectories are 
no longer circular, with m, and m2 possessing time- 
averaged cyclotron radii which are slightly greater than 
or less than the unperturbed radius of 1 cm. Observe 
that although the centers of the two clouds collide at 
two points per orbital period in the plotted trajectory, 
they never actually cross orbits (the slower cloud trajec- 
tory always remains within the faster cloud trajectory). 

Increasing the total number of ions (N,) by an order 
of magnitude to 1 x lo6 [Fig. l(b)] distorts the rotating 
frame orbits to an even greater extent from circular and 
that the largest distortions occur where the two clouds 
overlap. It is seen that the time-averaged cyclotron 
radius is enhanced and diminished, as the number of 
ions increases, for the higher and lower cyclotron fre- 
quency species. These trends are in agreement with pre- 
viously published theory,' and with experimental data 
measuring relative ion abundances as a function of 
increasing ion population for two close m a s s e ~ . ~ ~ ' ~  The 
time-averaged cyclotron radius is essentially equal to 
the ion cloud distance from the trap center, averaged 
over the entire trajectory. The difference in time- 
averaged cyclotron radius between the higher and lower 
cyclotron frequency species arises from the additional 
cyclotron velocity perturbation in the -E x B direc- 
tion.ll Since the space charge electric fields are equal in 
magnitude and opposite in direction, simple geometry 
shows that m, is pushed to a larger cyclotron radius 
while m, is pushed to a smaller cyclotron radius. 

Increasing N ,  from 1.5 x lo6 [Fig. l(c)] to 1.8 x lo6 
ions [Fig. l(d)] clearly shows that the trajectories are 
qualitatively different for those two cases. In Fig. l(d) 
the two ion clouds have locked cyclotron modes. This is 
easily deduced from a number of perspectives. First, the 
maximum cloud separation distance is small compared 
with the cyclotron radius. The maximum separation dis- 
tance is N 2 p , .  The trajectory of one ion cloud never 
encircles the origin independent of the other cloud after 
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cyclotron phase locking. Finally, the two clouds oscil- 
late many times in close proximity as compared with 
only two close collisions (in the rotating frame) for 
unlocked ion clouds. In the locked state the two clouds 
actually do not rotate completely around each other. 
After cyclotron phase locking, the Coulomb E x B drift 
entrains one ion cloud to the second cloud. However, 
the slower (m2) and faster (ml) clouds oscillate inwards 
and outwards, respectively, with respect to the trap 
center. This relative motion qualitatively resembles an 
antisymmetric normal mode oscillation since the ion 
clouds appear to move n: out of phase with respect to 
each other. Although the centers of the two clouds com- 
pletely overlap at closest approach, their orbits never 
cross, at least for the conditions used in our simulations. 
After the phase locking threshold has been surpassed, 
increasing the number of ions reduces the oscillation 
amplitude of relative motion and increases the 
Coulomb E x B oscillation frequency (proportional to 

It is important to compare the numerical simulations 
with theoretical predictions for the number of ions 
required to lock cyclotron modes. Using the above 
parameters B = 1 T, L = 3.3 cm, R ,  = 1 cm, p c  = 0.1 
cm, rn = 28 u and Am = 0.0364 u in Eqn (2), we predict 
that N,,, = 1.7 x lo6, in excellent agreement with the 
numerical result of 1.8 x lo6 ions. Repeating the above 
numerical simulations with identical parameters except 
for doubling the excitation potential, thereby increasing 
the post-excitation cyclotron radius from 1 to 2 cm, we 
find that a minimum of 3.6 x lo6 ions are required to 
lock cyclotron modes. This is in exact agreement with 
the theoretical prediction of Eqn (2) that N,,, is directly 
proportional to R, , not the RC3 dependence predicted 
by the recent theory of Naito and Inoue.* 

Additional rotating frame trajectories, using the same 
experimental parameters as above, are presented in Fig. 
2 to study the effect of varying relative ion abundance 
on the topology of the trajectories and on the phase 
locking threshold. The size of each box is the same as in 
Fig. 1, namely a width of 3.5 cm, and the ion clouds are 
excited to a coherent cyclotron radius of 1 cm. The 
upper and lower figures show trajectories before and 

E m  

Figure 2. Post-excitation cloud trajectories in the xy plane, 
before and after cyclotron phase locking, for two different relative 
abundances of ions. (a) NJN, = 9 : 1, top N, = 1 x 10' and bottom 
N,  = 1.5 x 10" ions; and (b) NJN, = 1 : 9, top N,  = 1.5 x 10' and 
bottom N, 2 x 10' ions. The ion clouds are phase locked in the 
lower plots. The other conditions are identical with those in Fig. 1. 

after reaching cyclotron phase locking, respectively. 
Trajectories are presented for the two cases where the 
faster and slower ion clouds contain 90% of the total 
ion population, in the frame of reference rotating with 
the weighted mean unperturbed cyclotron frequency, i.e. 
the frame rotating with frequency ( N , o , ,  + N,o , , ) /N , ,  
where N ,  = N ,  + N , .  In Fig. 2(a) the higher cyclotron 
frequency cloud contains 90% of the ions, whereas in 
Fig. 2(b) the lower frequency cloud contains 90% of the 
total ion population. As expected, while both ion clouds 
are perturbed by the presence of the other, the most 
abundant ion cloud is much less affected. Although the 
number of ions required to lock cyclotron modes is dif- 
ferent for the two relative abundances (also note from 
Fig. 1 that the case of equal relative abundance is 
intermediate), these differences are not very large, in 
agreement with Eqn (2). Also observe from the upper 
plots, corresponding to highly perturbed trajectories for 
the less abundant species close to phase locking, that 
the cyclotron trajectory is even more perturbed than for 
the case of equal relative abundance. The time-averaged 
cyclotron radius for the lower abundance species (which 
is approximately proportional to the detected FT-ICR 
signal) is greatly reduced or enhanced, just before cyclo- 
tron phase locking, depending on whether the less 
abundant species has a higher or lower mass, respec- 
tively, compared with the more abundant species. These 
trends are consistent with experimental observations. 

Numerical calculation of rigid ion cloud phase locking 
thresholds 

The previous discussion, with its use of the device of 
rotating frame ion trajectories, gives an insight into the 
kinds of motion two ion clouds with similar mass 
undergo as the ion population increases to the point of 
cyclotron phase locking. In order to test quantitatively 
the predictions of Eqns (2)-(4), the perturbed cyclotron 
frequencies are now calculated. A simple method to 
accomplish this accurately has already been developed 
and proven effective by numerically integrating Eqn (7) 
in Cartesian coordinates for the magnetron position 
and in amplitude-phase coordinates for the cyclotron 
position.' 

As coordinates, we describe the position of each ion 
cloud by 

xAt) = Rj COS(O,~ t + jj) + x,j 
yJt) = - R j  sin(oCjt + Pi) + y m j  (8) 

where R j ,  B j ,  xmj and ymj are the cyclotron radius, 
cyclotron phase, magnetron x position and magnetron 
y position of the jth ion cloud, respectively. These four 
variables are obtained for each uniform charge density 
cylindrical ion cloud directly by numerical integration 
of the appropriate equations of motion." 

As a demonstration of cyclotron phase locking in two 
cylindrical ion clouds, Fig. 3 plots the perturbed cyclo- 
tron frequency of each ion cloud (relative to the 
weighted unperturbed cyclotron frequency (N1wcl + N2oC2) /N , )  as a function of the total number of ions 
N ,  = N ,  + N ,  for three different relative abundances. 
Figure 3(a), (b) and (c) are plots for relative ion abun- 
dances in the ratios of Nl/N, = 1: 1, 9: 1 and 1:9, 
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Figure 3. Numerical simulations of the approach to cyclotron 
phase locking for two cylindrical ion clouds. The perturbed cyclo- 
tron frequencies relative to the weighted mean unperturbed cyclo- 
tron frequency are plotted as a function of the total number of ions 
contained in the two clouds for three different relative ion abun- 
dances: NJN, ratios of (a) 1 : 1, (b) 9 :  1 and (c) 1 :9. The ion 
clouds are started initially overlapping with equal cyclotron radii 
R, and zero magnetron radii. The conditions include m, = 999 u, 
m, =lo00 u,9, =-q, -e, B = 1  T, R, = 1  cm,p, =0.1 cm and L = 5  
cm. 

respectively. The parameters used in the simulations 
include rn, = 999 u, m2 = lo00 u, q = e,  B = 1 T and 
L = 5 cm. The clouds are started initially overlapping 
with Bj = 0 and R, = 1 cm. Figure 3 shows that the ion 
clouds have different cyclotron frequencies with low ion 
population; however, as N ,  increases past the phase 
locking threshold the cyclotron frequencies merge into a 
single collective cyclotron frequency which is approx- 
imately (but not exactly) equal to the weighted mean 
average of the unperturbed cyclotron frequencies. 

Using these parameters, Eqn (2) predicts N,,, w 55 
x lo3 ions, in agreement with the numerical phase 
locking threshold of 56 x lo3 ions in Fig. 3(a) for the 
case of equal abundance ion clouds ( N ,  = N2) .  Whereas 
Eqn (2) predicts that N,,, is independent of the relative 

abundance of ions in each cloud, Fig. 3 shows that there 
is actually a relative ion dependence. The ratio of faster 
N ,  to the slower N ,  ion cloud in the ratios of 9: 1 and 
1 : 9  requires -42 x lo3 and 62 x lo3 ions to lock 
cyclotron modes. Additional theory (see Appendix) pre- 
dicts that the fractional abundance dependence of N,,, 
is given by Eqn (2) multiplied by an additional factor on 
the right which depends on the relative abundances and 
linearly on the ratio pjR, . 

Figure 4 compares results of numerical simulations 
for phase locking thresholds as a function of the frac- 
tional abundance of ions in the faster (m, < m2) ion 
cloud, fi = N1/N, (with fl +f2 = 1). The numerical 
results are plotted as solid circles and the lines are used 
to depict the predominant linear dependence of N,,, 
with fractional abundance. Two different initial cyclo- 
tron radii are shown, demonstrating good agreement 
between numerical simulations and analytical theory. 
The numerical simulations corroborate the prediction 
(see Appendix) that dN,,,/df, K - pc2 although the 
predicted proportionality constant is smaller by a factor 
of - 1.7 compared with the numerical simulations. In 
the limit that R, % pc , Eqns (2)-(4) are the correct solu- 
tions for all relative abundances. 

We next study the various parameter dependences 
predicted by Eqn (2) for the total number of ions 
required to lock two cylindrical ion clouds. N, is varied 
in successive simulations with N ,  = N 2  until the per- 
turbed cyclotron frequencies are equal. The solid circles 
in Fig. 5 are results from numerical simulations for the 
number of ions N,,, required to lock cyclotron modes 
while the lines are predictions from Eqn (2). One 
observes very good agreement between analytical 
theory and numerical simulations for the conditions 
shown. In particular, the simulations agree with the pre- 
diction that N,,, oc R, Arn(B/~n)~ ,  independent of ionic 
charge for two ion clouds with the same charge state. 
Hence, it follows that M,,, K B(R, Am/Naye)liz. These 
dependences also hold for spherical ion clouds (in the 
limit R, 4 p,), point charges (R, B s) and line charges 
(R,  % s). 

As a further test, phase locking involving more than 
two ion clouds is numerically investigated. Phase 
locking is studied in a model system representing cyto- 
chrome c ( M  z 12 x lo3 u). The nine most abundant 
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Figure 4. Results of computer simulations (solid circles) on the 
cyclotron phase locking thresholds for two cylindrical ion clouds 
as function of relative ion abundance. The lines are to demonstrate 
the predominant linear variation. There are N,  =f,N, and N, = f,N.! 
ions in clouds 1 and 2, respectively. Two different cyclotron radii 
are shown. Parameters include 91 -9, =e, m, = 999 u. m2 = 1000 
u, B = 1 T, L = 5 cm and po - 0.1 cm. In the simulations the clouds 
are initially overlapping with cyclotron radiusR, . 
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Figure 5. Numerical simulations (solid circles) compared with predictions of Eqn (2) (lines) for the number of ions contained in two ion 
clouds (N, = N, and q, =q2)  required to lock the cyclotron modes of two ion clouds. In the numerical simulations one parameter is varied at 
a time, keeping all others constant. The parameter values which remain constant have the valuesm, =99.99 u,m, = 100.00 u (Am -0.01 u 
andm =I00 u), B = 1  T, q = e , R ,  = 1 cm,L = 5  cm andp, =0.1 cm. 

isotope peaks of either the 16+ or 4+ charge states of 
cytochrome c are included in the simulations. The rela- 
tive abundances of the nine ion clouds from lowest to 
highest molecular mass are 35.8, 60.1, 83.1, 97.7, 100.0, 
90.8, 74.1, 55.1 and 37.6. All ion clouds have the same 
dimensions (p, = 0.1 cm, L = 10 cm) and start initially 
overlapping (Rco = 2.5 cm, f l j F . =  0) in a B = 1 T mag- 
netic field. These initial conditions simulate ion clouds 
which extend the entire length of a 10 cm cubic trap and 
are excited to 50% of the maximum allowed radius. The 
number of ions in each cloud is varied in successive 
simulations while maintaining the correct relative abun- 

dances. Figure 6 plots the perturbed cyclotron fre- 
quencies (relative to the weighted average of the 
unperturbed cyclotron frequencies) and the maximum 
deviation in cyclotron radius from its initial value, ARj ,  
as a function of the number of ions N o  in the most 
abundant isotope peak. The most abundant isotope is 
identified in Fig. 6 as the line closest to zero relative 
frequency. One observes that, as the number of ions 
increases, the most abundant isotope peak and its 
immediate neighbors lock first, although not simulta- 
neously. Since the three central peaks in the isotope dis- 
tribution are the most abundant, these isotopes lock 
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Figure 6. Numerical simulations of the approach to cyclotron phase locking for nine cylindrical ion clouds (L = 10 cm, p, =0.1 cm) with 
masses and relative abundances equal to the nine most abundant isotope peaks in cytochrome c (M % 12000 u). The perturbed cyclotron 
frequencies (relative to the weighted mean unperturbed cyclotron frequency) and maximum deviation in cyclotron radius are plotted as a 
function of the number of ions contained in the most abundant isotope peak. Top, B = 1 T, z = 16+; middle, B = 1 T, z = 4+; bottom, 
B = 1.41 4, z = 16+. The ion clouds are started overlapping with initial cyclotron radii R, = 2.5 cm. 

before the others. Two major trends are evident that are 
in agreement with the two ion cloud model, Eqn (2). 
The minimum number of ions required to lock two ion 
clouds (in this case the most abundant peak and one of 
its two closest neighbors lock first) is proportional to B2 
and is independent of the charge state. On going from 
the top to the middle of Fig. 6, which represents a 
reduction in charge state from z = 16+ to z = 4+,  the 
number of ions required to lock the ion clouds (either 
the first two clouds to lock or all nine clouds to lock) is 
constant. In addition the AR, plots are identical for 
these cases. On going from the top to the bottom of Fig. 
6, the magnetic field increases from 1 to 1.414 T. The 
number of ions required to lock either the first two ion 
clouds or all of the ion clouds (No z 3400, not shown) is 
doubled, in agreement with the predicted B2 depen- 
dence of N,, for the two ion cloud model. 

Since the most abundant isotope peaks have similar 
abundances, we make the approximation N o  x N,,J2 

in order to compare quantitatively with the predictions 
of the two ion cloud model. With m = 12 x lo3 u, 
Am = 1 u, L = 10 cm, R, = 2.5 cm, p c  = 0.1 cm and 
B = 1 T in Eqn (2)  yields N,J2 = 950, which is in very 
good agreement with N o  % 980 ions required to lock 
the most abundant isotope peak of cytochrome c with a 
neighboring isotope peak. 

Additional simulations were carried out to determine 
the influence of multiple charge states, which are 
trapped simultaneously, on the phase locking threshold 
for the isotopic envelope of each charge state. The five 
most abundant isotopes of both the z = 4 +  and 
z = 16+ charge states of cytochrome c were included 
using the same experimental parameters as above. The 
isotopes in each charge state locked cyclotron modes 
with approximately the same number of ions as in iden- 
tical simulations which retained only one of the two 
charge states. Hence, the presence of other charge states 
does not significantly influence the phase locking 
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threshold within a single charge state’s isotopic 
envelope. 

Full three-dimensional numerical simulations on realistic 
deformable ion clouds: removal of the rigid ion cloud 
assumption 

Until now we have treated each m/z as a single rigid ion 
cloud with cylindrical shape. Inherent to this class of 
ion cloud are the assumptions that throughout the 
detection process, the ion cloud is stable and the density 
within each m/z cloud is nearly time independent. It is 
also possible that the Z-motion of ions within each 
cloud needs to be explicitly included in the analysis. 

In order to address these issues, the two-dimensional 
rigid ion clouds are now generalized to full three- 
dimensional ion cloud models including internal ion 
cloud dynamics, non-quadrupolar trap potentials, linear 
dipolar excitation and Z-motion. All of the basic 
assumptions (and their possible effect on the validity of 
the rigid ion cloud model in relation to experimental 
results) contained in the rigid ion cloud model are 
removed, allowing for a stringent test of the earlier pre- 
dictions. 

The most important physical processes which limit 
the lifetime of coherent cyclotron motion are collisions 
with neutrals and position-dependent cyclotron fre- 
quencies arising from anharmonic trap potential, space 
charge effects and magnetic field inhomogeneities. In 
addition, an inhomogeneous dipolar excitation electric 
field reduces the cyclotron mode lifetime if the excita- 
tion event significantly distorts the ion cloud shape or 
reduces the number density. We shall demonstrate that, 
perhaps contrary to expectation, the long-range 
Coulomb interaction does not distort significantly the 
ion cloud during linear dipolar excitation. 

Our three-dimensional model treats each different 
m/z ion cloud as a composite of a relatively large 
number of much smaller uniform density spherical ion 
clouds (i.e. superparticles) which have the same m/z as a 
single ion but charge of many ions. The motion of these 
superparticles is followed in three dimensions, including 
Coulombic interactions between superparticles of the 
same or different m/z and Z-motion in an applied trap 
electric field. While the individual superparticles have 
constant charge density (resulting in zero interaction 
force for two completely overlapping superparticles), 
there is no restriction on the charge density which the 
ion cloud can take. The distribution of superparticles is 
free to assume whatever charge density the equations of 
motion dictate. 

The three-dimensional dynamic equations for the jth 
superparticle are given by Eqn (7) for the dynamics per- 
pendicular to the magnetic field, supplemented by 

dZ  . 
dt 
- = UZj (9) 

for the parallel dynamics, where E, - 4 is the Z- 
component of the electric field (trap + Coulomb) and 

vzj  and Z j  are the Z-velocity and 2-position, respec- 
tively. The entire system of first-order differential equa- 
tions (Eqns (7) and (9) for each superparticle, 
6 x number of superparticles = 240 coupled differential 
equations) is integrated by second-order time-centered 
approximations with constant time step in Cartesian 
coordinates, as described before. 

Initial distributions of superparticles, each with 
radius 0.1 cm, are generated to model approximately a 1 
cm long, 0.1 cm radius cylindrical ion cloud which is 
initially aligned parallel to the magnetic field and trap 
Z-axis, by a selective cooling procedure. First, an initial 
ensemble of 40 superparticles is distributed by a 
random number generator to lie within a cylinder of 
length 1 cm along the Z-axis at the center of a specified 
trap potential. The superparticles are allowed to inter- 
act with each other via their Coulomb interaction and 
also with the applied electric and magnetic fields. Before 
cyclotron excitation, the positions of the individual 
superparticles within this distribution are followed for 
approximately 1 ms. During this time, a selective 
cooling procedure is implemented whereby any super- 
particles which have Z-positions exceeding f 0.5 em (i.e. 
that are outside of the desired ion cloud volume) have 
their Z-positions and Z-velocities reduced by half. This 
cooling method generates initial ensembles of super- 
particles which have the desired distribution (- 1 cm 
long ion clouds in this case) and are in a quasi- 
equilibrium state (thermal equilibrium is not a 
requirement). Subsequently, the superparticles are fol- 
lowed in time to guarantee that the quasi-equilibrium 
state is reached, then are subjected to a linear dipolar 
chirp excitation of 0.15 ms duration to excite all ions to 
a 1 cm coherent cyclotron radius. The post-excitation 
trajectories of the superparticles are followed for up to 
5000 periods of cyclotron motion. 

As a first example, we study the 3D dynamics of 40 
superparticles, each with radius 0.1 cm and m/z 100, as 
a function of the total number of ions (each super- 
particle represents a specified number of single ions with 
q = e and m/z 100). Following the selective cooling pro- 
cedure, the initial superparticle spatial distribution is in 
a quasi-equilibrium state which approximates a 1 cm 
long, 0.1 cm radius cylindrical ion cloud. The applied 
trap potential used in all of the 3D simulations is given 
by the cosh potential 

x cos(7c ;)cos(7c ;) 
where v ,  c and d are the trap potential, trap length 
along the Z-axis, and trap width, respectively. The name 
cosh potential has previously been given for the special 
case of Eqn (10) along the Z-axis.” As parameters, we 
use = 3 V and c = d = 5 cm (cubic cosh trap). This 
potential is simply the most important and lowest har- 
monic in the double Fourier series expansion of the 
exact tetragonal ICR trap potential. We have chosen to 
use the approximate cosh potential in the numerical 
simulations for convenience since this potential is much 
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faster to evaluate than the exact cubic trap potential. 
The basic physics is independent of the particular trap 
potential employed. Besides, the cubic cosh potential is 
actually more anharmonic than the true cubic potential. 
If the ion cloud is stable in the cosh potential, it certain- 
ly is stable in the true cubic potential. The cubic cosh 
potential is very well characterized and directly compa- 
rable to the exact cubic potential by expanding along 
the Z-axis in a Taylor series: 

The D,, for the cubic cosh potential, up to fourth-order, 
are Do 0.35, D, 3.43 and D ,  5.64. These are to be com- 
pared with the true cubic trap coefficients Do 0.33, D, 
2.77 and D, 1.02. The relative anharmonicity (defined as 
the ratio D4/Dz) is more than four times greater for the 
cosh potential than the true cubic potential. 

Even in the absence of Coulomb interactions, trap 
potential anharmonicity (proportional to D ,  or higher) 
shifts the single ion cyclotron, magnetron and Z -  
oscillation frequencies from their quadrupolar values. In 
particular the fourth-order anharmonic potential 
changes the single ion cyclotron frequency from w +  to 
w, + do,, where 60, depends on the ion's position 
within the trap according 

(-2A," + 2R; + Rf), 3VD4 do, = - 
2 ~ d 4  (12) 

where R,, R, and A, are the ion's cyclotron radius, 
magnetron radius and 2-amplitude, respectively. 
Neglecting internal ion cloud Coulomb interactions, 
dw, , ultimately limits the lifetime of coherent cyclotron 
motion by smearing the ion cloud over its cyclotron tra- 
jectory in a time - 2n/Awy', where Amy' is the 
maximum spread in cyclotron frequency across the ion 
cloud. One should note that magnetic field inhomoge- 
neity and the Coulomb interaction from other m/z ion 
clouds are also important processes which give mode- 
amplitude dependent cyclotron frequencies. In this 
example, the spread in cyclotron frequency is due to 
trap potential anharmonicity according to Eqn (12). 
The maximum theoretical mass resolutionz4 
R = 0.26qBT/m, where T is the observation time, is 
R z 1.6qB/(mAwE"') if the observation time is equal to 
the coherence time. We now proceed to demonstrate 
that a sufficiently strong internal ion cloud Coulomb 
electric field negates this mechanism of cyclotron mode 
dephasing. 

3D simulations on a single m/z deformable ion cloud 

It is important to determine the combined effects of 
linear dipolar excitation and anharmonic trap potential 
on the shape of a realistic deformable single m/z ion 
cloud, since our rigid 2D ion cloud analysis assumes 
that the ion cloud shape and density are time invariant. 
In all of the 3D simulations we begin with a quasi- 
equilibrium ensemble of superparticles (constant charge 
density spheres of radius 0.1 cm) arranged initially 
along the Z-axis of a cubic cosh potential [Eqn (10) with 
V, = 3 V and c = d = 5 cm]. A nominally 1 cm long, 0.1 

cm radius ion cloud is prepared by selectively cooling a 
randomly chosen distribution of 40 superparticles. Each 
superparticle contains a 1750e charge with rn/z 100 and, 
therefore, models a 1 cm long cylindrical ion cloud con- 
taining 40 x 1750 = 70 x lo3 singly charged m/z 100 
ions. This ion cloud is initially aligned parallel to mag- 
netic field ( B  = 1 T) at the center of the trap. After the 
cooling procedure, the superparticles are integrated in 
time for 1 ms, followed by a linear dipolar chirp excita- 
tion. The excitation frequency is swept from m/z 300 to 
50 in 0.15 ms with an amplitude set to excite the cyclo- 
tron modes to 1 cm radius. The post-excitation super- 
particle trajectories are then followed for a relatively 
long detection period. 

Figure 7 plots the superparticle distribution in the yZ 
plane at times corresponding to 0.3 ms before and 0.3 
ms after the excitation event. The most important 
observation is that the linear dipolar excitation does not 
distort significantly this ion cloud from its original 
shape. Figure 8 shows superparticle 2-positions as a 
function of time for five representative particles in this 
distribution. The chirp begins at time t = 0 and lasts 
0.15 ms. Afterwards, the superparticles have coherent 
cyclotron radii -1 cm. Modulation of Z(t )  arising pri- 
marily from the strong Coulomb electric field is clearly 
evident in Fig. 8. The Coulomb interaction couples the 
Z-modes of all superparticles for these conditions 
resulting in 2-mode energy exchange. This energy 
exchange is reflected in Fig. 8 as the variation in modu- 
lation envelope of the different Z,(t). As an example, 
2,(t) starts with approximately zero 2-amplitude 
(neglecting Coulomb interactions this particle remains 
close to the Z = 0 plane). However, by t = 1.4 ms, the 
Z-amplitude for this superparticle increases to -0.5 cm, 
which is the length of the ion cloud. 

Having demonstrated that the 3D ion cloud shape 
remains virtually invariant before and after linear 
dipolar excitation, we proceed to study the stability of 
coherent cyclotron motion. We have undertaken a 
series of numerical simulations to examine the effect of 
increasing the number of ions contained in the ion 

--I 
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(before) 
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Figure 7. Superparticle yZ positions 0.3 ms before and 0.3 ms 
after the linear dipolar excitation event. The full 3D equations of 
motion are numerically integrated. A 1 cm long, 0.1 cm radius ion 
cloud consisting of 70 x lo3 singly charged rn/z 100 ions is 
modeled by 40 m/z 100 charged spheres (radii 0.1 cm) each carry- 
ing 175Oe charge. The 0.15 ms chirp excitation event excites the 
cloud (originally along thez-axis) toR, % 1 cm. 
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Figure 8. Z-Positions as functions of time for five out of 40 
superparticles. Parameters as in Fig. 7. Since the superparticles 
approximate a 1 cm long cloud, a particle with IZ(t)l = 0.5 cm is at 
the cloud edge. 

cloud. Figure 9 shows xy projections at 15.5 ms after 
the chirp excitation for different simulation runs, 
employing the same trap and cloud shape parameters as 
above except that the charge contained in each super- 
particle is varied in different runs while maintaining m/z 
100. Figure 9(a)-(d) show the effect of increasing the 
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total number of ions from zero (neglect of Coulomb 
interactions altogether) to 75 x lo3 ions. 

In the absence of Coulomb interactions [Fig. 9(a)], 
the ion cloud spreads out in an arc over its cyclotron 
trajectory. This smearing effect is due to the variation in 
cyclotron frequencies across the cloud arising from the 
anharmonic trap potential. The cyclotron frequency dif- 
ference (AWE"') for this ion cloud can be estimated from 
Fig. 9(a) by dividing the arc length in radians of the 
cyclotron trajectory spread by time. Using this pro- 
cedure, d ~ ; ~ '  = (2n) 36 Hz, indicating that the lifetime 
of coherent cyclotron motion (7' = 2 n / A 0 3  is limited 
to 28 ms for this particular ion cloud, neglecting 
Coulomb interactions. The variation in cyclotron fre- 
quency, for this example, predominantly comes from the 
fourth-order anharmonic trap potential. From Eqn (12), 
Aw?' w 1 (6mc(A, = 0.005 m} - 5mc(A, = 0) 1 = ( 2 ~ )  30 
Hz, using the above parameters. 

Coulomb interactions substantially influence the life- 
time of coherent cyclotron motion. In Fig. 9(b), the total 
number of ions contained in the ion cloud is increased 
to 25 x lo3. The ion cloud is even more distorted than 
when Coulomb interactions are neglected. Additional 
numerical simulations using 10 x lo3 ions (not shown) 
show that internal cloud Coulomb interactions reduce 
the lifetime of coherent cyclotron motion by a factor of 
four times smaller compared with the case when 
Coulomb interactions are negligible [Fig. 9(a)]. 
However, in Fig. 9(c) and (d), corresponding to 50 x lo3 

Figure 9. Rotating frame xy superparticle positions at 1 5.5 rns after excitation for an m/z 100 ion cloud modeled by 40 superparticles. (a) 
Neglect of Coulomb interactions; (b) 25 x 1 O3 e ;  (c) 50 x 1 O3 e; (d) 75 x 1 O3 e total charge. 
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and 75 x lo3 ions, respectively, the ion cloud remains 
coherent, hence stable. Similar observations have been 
reported by Miluchihin et d." on the basis of computer 
simulations. This phenomenon is completely analogous 
to cyclotron phase locking between different m/z ion 
clouds, except now the cyclotron frequency difference 
arises from the trap potential anharmonicity instead of 
a difference in m/z. The origin is due to a sufficiently 
strong internal ion cloud Coulomb E x B drift to over- 
come differences in cyclotron frequency across the 
cloud.' The internal ion cloud Coulomb E x B drift sta- 
bilizes the ion cloud for sufficiently strong electric field. 
On the other hand, as our simulations demonstrate, if 
this locking limit is not achieved, the Coulomb E x B 
drift may significantly reduce the lifetime of coherent 
cyclotron motion compared with the case when 
Coulomb interactions are neglected. For a single m/z 
cylindrical ion cloud which has a variation in cyclotron 
frequency at different positions across the cloud (e.g. as 
a result of trap anharmonicity or magnetic field 
inhomogeneity), according to Eqn (l), the ion cloud is 
stable provided that 

(13) 

The variation in cyclotron frequency across the ion 
cloud, Amyt, is due to any mechanism which gives rise 
to a spatially dependent cyclotron frequency. With 
Amy' = (2n) 36 Hz, q = e,  L = 1 cm, B = 1 T, Rc = 1 
cm and p c  = 0.1 cm, Eqn (13) predicts that the internal 
Coulomb E x B drift stabilizes the ion cloud if 
N > 25 x lo3 ions. This estimate is in qualitative agree- 
ment with the 3 D  simulations which required 35 x lo3 
ions to stabilize the ion cloud. If the spread is cyclotron 
frequency is due to purely electrostatic processes, such 
as trap potential anharmonicity or Coulomb inter- 
actions, then AmSx' cc B - l  (see Eqn (12), for example). 
Combining this magnetic field dependence with Eqn 
(13), we predict that the internal ion cloud phase 
locking condition to overcome the ion cloud smearing 
effect from electrostatic imperfections is independent of 
magnetic field. In spite of electric and magnetic field 
imperfections which limit the lifetime of coherent cyclo- 
tron motion, it is possible to overcome this limitation 
with a strong internal Coulomb E x B drift through the 
mechanism of cyclotron phase locking. This prediction 
pertains to achieving ultra-high resolution (i.e. 'infinitely 
long' coherent cyclotron motion), and not to the 
maximum possible resolution attainable if the locking 
condition, Eqn (13), is not satisfied, since maximum pos- 
sible resolution R cc BT cc B2 for electrostatic imperfec- 
tions, neglecting Coulomb interactions. 

The picture presented here is a follows: if the locking 
condition, Eqn (13), is not satisfied for a particular m/z 
ion cloud, then the cloud initially begins to spread in an 
arc over its cyclotron trajectory owing to cyclotron fre- 
quency differences arising from various external sources, 
most notably trap potential anharmonicity, magnetic 
field inhomogeneity and Coulomb interactions from 
other m/z ion clouds. Neglecting internal cloud 
Coulomb interactions, the lifetime of coherent cyclotron 
motion is T w 2n/Amy'. The maximum achievable mass 
resolution for this transient R w ( 1.6)qB/(mAm~t). Inter- 

nal ion cloud Coulomb interactions dramatically alters 
these results. If the internal Coulomb E x B drift rota- 
tion is not strong enough to overcome variations in 
cyclotron frequency across the cloud, the ion cloud 
spreads in an arc in a time which can be much shorter 
than 2n/AwEx'. The origin of this Coulomb enhanced 
breakup of the ion cloud is not understood, though it 
may be related to the well known diocotron insta- 
bility.26 A diocotron mode is similar to the magnetron 
mode except the radial electric field arises from the 
image charge instead of the TCR trap. A single ion cloud 
which has a non-monotonic density distribution (e.g. a 
hollow beam or a partial annulus) is an unstable ion 
distribution which rapidly breaks apart, within the con- 
straints of energy and angular momentum conserva- 
t i ~ n . ' ~ , ' ~  This instability arises because an ion cloud 
which deviates significantly from circular cross-section 
(e.g. one which is partially smeared over its cyclotron 
trajectory) has significant variation in its internal E x B 
rotation frequency (aE/B) across the cloud, resulting in 
shear which may destroy the cloud's coherence. 

One interesting consequence of the diocotron insta- 
bility to ICR relates to either creating ions off-axis by 
electron ionizationz8 or injecting ions off-axis by an 
external source.29 For these situations, the magnetron 
(or diocotron) motion rotates the ions during accumula- 
tion through an annulus resulting in a hollow density 
distribution (e.g. the ion cloud looks like a hollow cylin- 
der in the xy plane with its center axis parallel to the 
Z-axis). A hollow beam distribution is unstable due to 
the diocotron instability, resulting in rapid breakup of 
this distribution and evolution towards a uniform dis- 
tribution (some ions move towards the trap center while 
others move further away while conserving total canon- 
ical angular momentum2' about the Z-axis). The dioco- 
tron instability has only been extensively studied for the 
low-frequency diocotron modes and not the high- 
frequency modes near the cyclotron frequency, although 
the stability results may carry over to both cases. Hence 
R is actually reduced from the zero Coulomb inter- 
action prediction. On the other hand, if Eqn (13) is 
satisfied, then the strong internal Coulomb E x B rota- 
tion stabilizes the cloud, resulting in coherent cyclotron 
motion limited only by dissipative forces. 

In the simulations presented here trap potential 
anharmonicity is dominant, which leads to a spatially 
dependent frequency given by Eqn (12) for the fourth- 
order trap potential. One should realize that trap poten- 
tial anharmonicity is not the only mechanism which 
may lead to position-dependent cyclotron frequencies. 
Magnetic field inh~mogeneity~' or the Coulomb electric 
field6 arising from other m/z ion clouds can also give 
non-zero AWE". Even in the ideal case of ion motion in 
a purely quadrupolar (harmonic) trap potential and a 
homogeneous magnetic field, the Coulomb electric field 
from other m/z ion clouds give a non-zero AWE''. 

An important result of the 3 D  numerical simulations 
for a single m/z is that in order to observe very long 
coherent cyclotron motion (say > lo' cyclotron 
periods), the Coulomb E x B rotation within each m/z 
ion cloud must be sufficiently fast that the cloud does 
not break apart due to the cyclotron frequency varia- 
tion across the cloud arising from applied fields. This 
conclusion supports earlier 2D stability model predic- 
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tions of Peurrung and Kouzes.' In the simulations, we 
distributed 40 superparticles of the same m/z within a 
cubic cosh potential (to produce a nominally 1 cm long, 
0.1 cm radius cylindrical ion cloud), excited the super- 
particles to 1 cm cyclotron radius, and observed their 
behavior through time for a long post-excitation detec- 
tion period. Since the approximate cubic cosh potential 
has a D, coefficient 5.5 times larger than the exact cubic 
potential, we predict that the same ion cloud requires 
just N > 5 x lo3 ions in an exact cubic potential (with 
5 cm length and 3 V on the z-plates). One should realize 
that this prediction pertains to the achievement of infi- 
nitely long detected coherent cyclotron motion 
(pressure limited in practice) for an ensemble of ions 
with the same m/z, and not the minimum number of 
ions required to observe coherent cyclotron motion 
before the dephasing time < 21r/Am:' is reached. 

Prediction of an ultra-high resolution dynamic range 
limit for simultaneously confined species 

As mentioned above, the Coulomb electric field arising 
from all other mn/z ion clouds gives a non-zero frequency 
difference Amy' across each ion cloud, which limits the 
lifetime of coherent cyclotron motion to <27c/Ao,'"'. In 
order to detect coherent cyclotron motion lasting S 
2lt/A0:~', the number of ions N in each m/z cylindrical 
ion cloud must be sufficiently high that Eqn (13) is satis- 
fied. However, increasing N also increasing the 
Coulomb AmF', making it more difficult to achieve 
stable coherent cyclotron motion. Furthermore, since 
the cyclotron frequency shift on cloud 1 due to the 
Coulomb electric field from cloud 2 is proportional to 
N 2 ,  the number of ions in cloud 2, there is an ion abun- 
dance dependence to achieving stable coherent cyclo- 
tron motion. Our model predicts the existence of a 
maximum ultra-high resolution dynamic range due to 
the Coulomb frequency shift across the cloud. 

Using Chen and Comisarow's estimate6" for the 
cyclotron frequency shift arising from a finite length line 
charge (cloud 2) on another line charge (cloud 1) [Eqn 
(19a) in Ref. 6a], the maximum variation in cyclotron 
frequency across cloud 1 is 

(14) 
where Am:;' is the difference in cyclotron frequency 
between an ion in cloud 1 due to cloud 2 located at 
Z = 0 and an ion located at the cloud edge, Z = L/2. 
Combining Eqns (13) and (14) and then solving for the 
abundance ratio N 2 / N ,  yields the condition for achiev- 
ing 'infinitely long' transients (i.e. detected cyclotron 
motion lasting $=. 2n/Am:;') for both m/z ion clouds: 

1 - I-' (15) 
IJ0.25 + 2(R,/L)2 Jm 

This equation should only be expected to give reason- 
able results when L > 2p,, since the spread in cyclotron 

frequencies, Eqn (14), is derived for line charges. If 
N 2 / N ,  > (Nz/Nl)mzx, then Eqn (13) predicts that while 
cloud 2 is stable, the Coulomb electric field from cloud 
2 on cloud 1 ultimately destabilizes cloud 1 in a time 
< 274Aw~f'. Evidently, (Nz/N1),,, is an estimate of the 
maximum dynamic range for achieving simultaneous 
detected cyclotron motion lasting % 2nAm7' in two 
different m/z ion clouds. As an example of the applica- 
tion of Eqn (15), if q1 = q 2 ,  R, = 1 cm, p, = 0.1 cm and 
L = 1 cm, then the maximum ultra-high resolution 
dynamic range (N2/N1),,, x 100. With q1 = q 2 ,  
R, = 1 cm, p, = 0.1 cm and the limit R, 4 L ,  then 
(N2N1),,,  w R,/pc = 10. The maximum ultra-high 
resolution dynamic range is much higher for com- 
pressed ion clouds (just as long as the two clouds 
do not lock cyclotron modes). For example, if the 
two clouds are compressed to L = 0.25 cm, then 
(NJN1)max M 4400. 

3D simulations on two closely spaced m/zs 

We now describe the results of 3D simulations on two 
different m/z ion clouds (each m/z ion cloud is com- 
posed of 20 superparticles for a total of 40 
superparticles). The same parameters are used in these 
simulations as above for the single m/z case. Each m/z 
ion cloud consists of 20 spherical superparticles of 
radius 0.1 cm. One ion cloud has m/z 100 while the 
second has m/z 100.15 u. The trap potential is the same 
as above, namely the cubic cosh potential with V, = 3 V 
and c = d = 5 cm. Initial distributions of superparticles 
are generated by the selective cooling procedure to 
model nominally 1 cm long, 0.1 cm radius cylindrical 
ion clouds. The superparticles are excited by linear 
dipolar chirp excitation lasting 0.15 ms to yield a post- 
excitation cyclotron radius of 1 cm. Movies are created 
of the post-excitation trajectory, in the frame rotating 
with the weighted mean unperturbed cyclotron fre- 
quency. 

Figure 10 plots the xy projection (perpendicular to B 
in the rotating frame) of superparticle positions at time 
t = 2.1 ms after excitation, which corresponds to the 
time n/Am,, where Am, is the difference in unperturbed 
cyclotron frequency between the two ion clouds due to 
their mass difference. In Fig. lqa) and (b) there are two 
distinct ion clouds corresponding to the two different 
m/zs. Each individual ion cloud is stable against the 
variation in cyclotron frequency arising from the trap 
potential anharmonicity (described above for the single 
m/z case), since the total number of ions in each cloud is 
greater than 35 x lo3 (for a total of 70 x lo3 in both 
clouds). However, the two different m/z ion clouds do 
not phase lock into a single cloud until the total 
number of ions in both clouds reaches 100 x lo3, 
shown in Fig. lO(c). This phase locking threshold is 
directly comparable to analytical rigid ion cloud predic- 
tions. Putting m = 100 u, Am = 0.15 u, B = 1 T, R, = 1 
cm, L = 1 cm and pc = 0.1 cm into Eqn (2) gives the 
rigid ion cloud prediction that N,,, = 160 x lo3 ions 
are required to phase lock the two different m/z ion 
clouds. The difference between the rigid ion cloud pre- 
diction and the 3D computer simulations on 40 super- 
particles may be attributed to the fact that the ion 
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Figure 10. Rotating frame xy superparticle positions at 2.1 ms 
after cyclotron mode excitation for two different m/z ion clouds 
(100.00 and 100.15 u). The ion clouds are constructed out of 20 
m/z 100.00 and 20 m/z 100.1 5 superparticles. The total charge 
contained in the two clouds is (a) 80 x 1 O3 e, (b) 90 x 1 O3 e and 
(c) 100 x lo3 e. In (a) and (b) there are two distinct ion clouds, 
each with different m/z. whereas in (c) the two ion clouds have 
locked (coalesced) into a single cloud. 

clouds used in the 3D simulations are not infinitely long 
charged cylinders but rather spheroidal. The ion clouds 
used in the 3D simulations actually have cloud length 
to radius ratios which place them between the two 
idealized cases of infinitely long cylinders and spheres. 
Previous rigid cloud studies have shown spherical ion 
clouds lock cyclotron modes with considerably fewer 

ions than very long clouds which have the same radius 
and total number of ions. From the perspective of mass 
spectrometry, Eqn (2) is actually a best case limit for the 
total number of ions required to lock cyclotron modes. 

There are interesting implications to the dual require- 
ments of achieving stable coherent cyclotron motion 
and preventing two closely spaced m/zs from locking 
cyclotron modes. In order to achieve stable coherent 
motion, one should increase the number of ions con- 
tained in the cloud. On the other hand, in order to 
prevent two closely spaced m/zs from locking cyclotron 
modes, the number of ions should be reduced. There- 
fore, the possibility exists that two closely spaced m/z 
ion clouds may lock cyclotron modes (i.e. coalesce into 
a single detected cyclotron frequency) with a smaller ion 
population than is required to stabilize the ion clouds. 
For this situation, the two ion clouds may be unre- 
solvable regardless of the total ion population. In prac- 
tice, the ion clouds may still be resolvable at low ion 
populations if the required mass resolution m/Am is 
considerably smaller than w,/AoY', where Ao?' is the 
variation in cyclotron frequency across a single m/z ion 
cloud due to field imperfections. The cloud stability 
limit, Eqn (13), applies towards the goal of achieving 
coherent cyclotron motion lasting & 2z/Ao%"'. 

Analytical theory supported by numerical simulations 
demonstrates that the isotopic envelope is unresolvable 
past a high molecular mass limit (Mmax) due to space 
charge induced cyclotron mode phase locking. M,,, is 
proportional to B, independent of the charge state for 
ion clouds which are close in mass with equal charge 
state (e.g. the isotopic envelope for the molecular ions of 
a large biopolymer). M,,, increases as BJA-), 
where no is the average number density (number of 
ions/cloud volume) for the two ion clouds, Am is the 
mass difference and RJp ,  is the cyclotron radius 
divided by the cloud radius. 

These results should help serve as a guide in 
developing the next generation of ESI-FT-ICR mass 
spectrometers for high molecular mass applications. An 
order of magnitude estimate predicts that M,,, x 1 
x 104B (in units of u and T), independent of charge 
state, for mass peaks which are 1 u apart. This esti- 
mate is consistent with present instrumental per- 
formance limits. While increasing an ion's charge state 
increases the achievable FT resolution (proportional to 
the cyclotron frequency and observation time of coher- 
ent cyclotron motion), M,,, is unaffected by an increase 
in the ion's charge state. Once M,,, has been surpassed, 
the isotopic envelope is unresolvable no matter how 
long the coherent motion is observed. The magnetic 
field strength and trap geometry (whch is indirectly 
related to ion cloud shape and maximum allowed cyclo- 
tron radius) obviously should be chosen such that M,,, 
is somewhat greater than the highest molecular mass 
system whose isotopic distribution is to be resolved. 

The effects of internal ion cloud dynamics, Z-motion 
and anharmonic trap potential on cyclotron phase 
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locking have been studied by three-dimensional numeri- 
cal simulations which treat every different m/z ion cloud 
as a relatively large number of Coulombically inter- 
acting superparticles. Each spherical superparticle has 
the same m/z as the ion cloud while containing the total 
charge and mass of many individual ions. The 3 D  simu- 
lations show that the shape of the ion cloud for a single 
m/z is virtually unaffected by linear dipolar excitation. 
Qualitatively, the full 3 D  simulations are consistent 
with the predictions of the 2D rigid ion cloud model. 
Also, there are actually two different phase locking con- 
ditions possible for realistic deformable ion clouds. For 
a single m/z ion cloud in a non-quadrupolar trap (i.e. in 
most real traps), there is a spread in cyclotron fre- 
quencies across the cloud as a result of frequency shifts 
arising from the anharmonic trap potential, magnetic 
field inhomogeneity or Coulomb electric field from 
other m/z ion clouds. For a sufficiently strong internal 
ion cloud Coulomb E x B rotation the different cyclo- 
tron frequencies, as a result of trap anharmonicity for 
example, lock into a single detected cyclotron fre- 
quency. In addition, the ion cloud remains coherent 
indefinitely. On the other hand, neglecting Coulomb 
interactions, the ion cloud smears out in an arc over its 
cyclotron trajectory in a time - 2n/Aoy', where Amy' is 
the maximum variation in cyclotron frequency across 
the cloud arising from field imperfections. Even in the 
ideal case of ion motion in a purely quadrupolar 
(harmonic) trap potential and homogeneous magnetic 
field, the Coulomb electric field from other m/z ion 
clouds give a non-zero Amy'. 

Analogously, the 3 D  simulations on two different 
closely spaced m/zs agree with the rigid ion cloud result 
for cyclotron phase locking due to m/z differences. A 
sufficiently strong Coulomb E x B rotation between the 
two different m/z ion clouds locks the cyclotron modes 
of the two ion clouds. The locking conditions in the full 
3 D  simulations on realistic deformable ion clouds, 
including the effects of internal Coulomb interactions, 
Z-oscillation, linear dipolar excitation and trap potential 
anharmonicity, are in qualitative agreement with the 
predictions of the analytical 2D rigid ion cloud model. 

There are two possible routes towards achieving 
ultra-high resolution by FT-ICR mass spectrometry. In 
the first approach, one simply goes to higher (and more 
expensive) magnetic fields, more ideal external fields and 
lower ion populations. The predictions of this work 
suggest an alternative route which should be used when 
the first approach fails and is especially relevant in low 
field instruments. 

The first (or traditional) approach to achieving ultra- 
high resolution relies on increasing oJAoF' to a level 
that the duration of coherent cyclotron motion is suffi- 
cient to resolve the species of interest. Increasing B 
increases mass resolution proportional to BT, where T 
is the observation time of coherent cyclotron 
motion.'*24 From the viewpoint of this work, T is 
limited by differences in cyclotron frequency across the 
ion cloud to a maximum of 2n/Awyt, neglecting 
Coulomb interactions. If o,/Aoy' is made somewhat 
larger than m/Am, then it is possible to observe coherent 
cyclotron motion long enough to reach the mass 
resolution m/Am, regardless of the stability condition, 
Eqn (13). One still has to worry about locking cyclotron 

modes of closely spaced mlzs, but this can now be cir- 
cumvented by reducing the ion density, according to 
Eqn (2) or (4). The difference in cyclotron frequency 
across the cloud, Amy', can be reduced by making the 
ion cloud spatially more compact (owing to the posi- 
tional dependence of the cyclotron frequency shifts 
arising from trap anharmonicity, Coulomb electric field 
and magnetic field inhomogeneity) and increasing B 
(Am?' cc B-l  for electrostatic imperfections). In addi- 
tion, if a pure quadrupolar trap potential and homoge- 
neous magnetic field are employed, trap potential 
anharmonicity and magnetic field inhomogeniety are 
eliminated, by definition, leaving just the Coulomb con- 
tribution to Am?', which can be decreased by using 
smaller ion populations or higher B. This traditional 
approach may be the preferred direction towards the 
development of routine ultrahigh resolution per- 
formance since this approach involves minimal 'tuning.' 

However, in the regime of low magnetic fields, for 
example, there is an alternative route towards achieving 
ultra-high resolution. There is also wide interest in the 
development of a low-field (low-cost) ultra-high 
resolution FT-ICR mass spectrometer for bench-top use 
or applications requiring portability. 

The traditional route to ultra-high resolution fails if 
m/Am > w,/Awy', because in this situation the coherent 
cyclotron motion dephases before a transient of suffi- 
cient duration can be acquired. In order to observe 
coherent cyclotron motion of an ion ensemble lasting 
much longer than 2n/Amy', it is necessary to stabilize 
the individual m/z ion clouds by increasing the ion 
density. Once stabilized, the 3 D  deformable ion clouds 
remain coherent indefinitely (pressure limited in 
practice). These stabilized ion clouds behave very simi- 
larly to rigid ion clouds. The predictions of this work 
are most relevant in the regimes of either ultra-high 
resolution, high ion population or low magnetic field. 
Basically, in order to achieve infinitely long coherent 
cyclotron motion, the ion population needs to be 
increased according to Eqn (13). However, increasing 
the number of ions to stabilize the individual m/z ion 
clouds also increases the likelihood that two closely 
spaced masses will lock cyclotron modes and coalesce 
into a single mass peak. Therefore, one should attempt 
to reduce Amy' to acceptable levels by minimizing trap 
potential anharmonicity and magnetic field inhomoge- 
neity. The contribution to Aoy'  from the Coulomb elec- 
tric field of other m/z ion clouds is still present and is 
predicted to give an upper dynamic range limit for 
simultaneously confined species varying from a low of 
RJp, M 10, for ion clouds which are long compared 
with their cyclotron radii, to a dynamic range of several 
thousand for compact clouds. Although not investigated 
here, it is likely that dipolar excitation electric field 
inhomogeneity should be minimized in order to ensure 
that the ion cloud before and after dipolar excitation is 
in a quasi-equilibrium state and to minimize the cloud's 
post-excitation spatial extent, thereby minimizing Boy'. 

The results of this work establish firm limits to per- 
formance that apply for conventional FT-ICR of high 
molecular mass species. As noted previously, FT-ICR 
performance degrades substantially as molecular mass 
increases, particularly in ESI owing to the com- 
binatorial explosion of charge states and the size of the 
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isotopic envelope (and also practical limitations due to 
sample heterogeneity and adduction). These consider- 
ations require the use of larger ion populations in order 
to obtain a statistically representative sample, aggrevat- 
ing the difficulties due to cyclotron phase locking. We 
note that one way to avoid the M,,, limit described in 
this paper is to make measurements under conditions 
where resolution per se is not required. In fact, this 
laboratory has previously reported on individual ion 
methods that do this, and we have shown that molecu- 
lar mass measurements for very large ions become pos- 
~ i b l e . ~ '  A similar approach can also be proposed in 
which large numbers of spectra obtained with small ion 

populations are summed so as to circumvent the limit 
described. The practicality of such an approach remains 
to be established and at present the limitations 
described in this paper should be firm for conventional 
methodologies. 
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APPENDIX 

Test charge interacting with a non-perturbable cylindrical 
ion cloud with a coherent cyclotron mode 

The cyclotron dynamics of a single test charge (or a line 
charge containing just one ion) which interacts with an 
infinitely long charged cylinder, containing a total 
charge much greater than the single test charge, rep- 
resents the idealized case where the cyclotron motion of 
the charged cylinder is unperturbed by the test charge. 
While the test charge is perturbed by the cylinder's 
space charge electric field, the charged cylinder is vir- 
tually unaffected by the presence of the line charge. It 
follows from the magnetron mode equation of motion, 

Eqn (7b), that a single ion within the cylinder, before 
cyclotron excitation, rotates about the cylinder's own 
symmetry axis owing to the radial space charge electric 
field with frequency w, = E/Br.  Constant density ellip- 
soidal clouds in a homogeneous magnetic field rotate as 
rigid rotors without shear since their electric field is pro- 
portional to r within the ellipsoid. The constant density, 
rigid ion cloud assumption does not correspond to most 
ion clouds in ICR experiments since such density pro- 
files occur only for ion clouds in the zero temperature 
high density limits.15*16 For ion clouds which are in 
thermal equilibrium and have non-zero temperature, 
the density falls to zero at the cloud edge in a distance 
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on the order of the Debye length.l5*I6 However, the 
constant density, rigid ion cloud assumption allows for 
relatively simple analytical predictions. In any case, we 
have shown that full three-dimensional numerical simu- 
lations on realistic ion clouds (non-zero temperature, 
variable density) give phase locking predictions in qual- 
itative agreement with the rigid cloud model. 

As an example, or for an infinitely long cylinder of 
radius p, and line charge density Nq/L (total charge N q  
contained in a segment of the cylinder L long) is 

w, = N q  (cylindrical cloud) (Al) 
2ne0 p: LB 

The most appropriate frame of reference for viewing a 
test line charge interacting with a non-perturbable ion 
cloud is the frame rotating with the ion cloud with 
origin at the cloud center. This rotating frame is illus- 
trated in Fig. Al.  The coordinates Xlab and Ylab are trap- 
centered coordinates in the laboratory frame, while x 
and y are cloud-centered coordinates in the rotating 
frame. Defining ro and rl as cyclotron position vectors 
in the laboratory frame with origin at the trap center for 
the ion cloud with cyclotron frequency wc0 and test ion 
with cyclotron frequency wcl, respectively, the equa- 
tions of motion in the laboratory frame, derived from 
Eqn (7a), are 

to = wcoro x f 

(:y i, = wClrl x f - w, - (ri - ro) x f (A2) 

where r is the distance from the ion cloud's symmetry 
axis to the test charge and p is an exponent dependent 
upon the assumed interaction. In particular, p = 0 
within the cylinder (r  < p,) and p = 2 outside the cylin- 
der (I > p,). These choices for exponent are exact for a 
uniform charge density infinitely long cylinder of radius 
p,. For this case, the space charge electric field is zero 
along the cylinder's axis (r = 0), increases linearly with r 
up to the cylinder's edge at r = p c ,  then falls as l /r for 
> p,. Transforming to a frame of reference rotating 

with the ion cloud and origin at the cloud's center 

Ylab 

t 

Figure Al .  Frame of reference rotating with the ion cloud with 
frequency we,, and origin at the cloud center. The laboratory frame 
(origin at the trap geometric center) coordinates are x , , ~ ,  yIab 
while the test ion is located at x, y in the rotating frame of refer- 
ence. R, and pc are the cyclotron radius and cloud radius, respec- 
tively. 

results in a single equation for the test ion: 

i* = k w ,  - wr(ty]r* x f + Awcro* x 2 (A3) 

where Am, = wC1 - a,, and r* is the test ion position 
vector in the rotating frame with origin at the cloud's 
center (r = rl - ro,  1 r I = I r* I). In the rotating frame, 
the ion cloud position vector ro* is constant. Using Car- 
tesian coordinates with the ion cloud along the y-axis, 

f = k o ,  - w,( :r]y + Aw, R, 

By scaling time with the cloud rotation period 2n/w, 
and length by R, ,  these equations simplify to a non- 
dimensional form depending only on two parameters; 
p,/R, and Ao,/w,. For the case when an ion is not 
phase locked to the cloud, the test ion revolves com- 
pletely around the trap center owing to the relative 
cyclotron motion in perturbed cyclotron orbits. One 
can show either analytically by a fixed point analysis 
(setting all time derivatives equal to zero then solving 
for the stability points with p = 2, which assumes that 
the test ion is initially located on the cloud edge) or by 
direct numerical integration that the phase locking con- 
dition predicted by Eqn (A4) for the test ion is different 
for the two cases Aw, > 0 and Am, < 0. If doc > 0, the 
test ion is bound to the ion cloud when 

where k* is a constant whose value depends only on the 
cloud geometry and the initial position of the test 
charge within the ion cloud. The particular value for k* 
can be deduced either from numerical simulations of 
Eqn (A4) or by comparison with Eqn (1). On the other 
hand, when Am, < 0, the stability condition is 

The test ion is more likely to be bound to the ion cloud 
when Am, < 0 (i.e. the test ion has a cyclotron fre- 
quency smaller than that of the ion cloud) than when 
Am, > 0. The reason why the sign of Am, is involved in 
the phase locking threshold is that the test charge 
receives a Coulomb E x B velocity perturbation whose 
direction is either radially inward or outward from the 
cloud center depending on whether the test ion is 
moving faster or slower relative to the ion cloud." 

Now, consider two ion clouds with equal cloud 
dimensions but variable relative ion populations; N q  is 
replaced by N , q ,  + N,q, in Eqn (Al). In particular, 
cloud 1 contains fiN, while cloud 2 contains f i N ,  ions, 
where fl and fi are the relative fraction of the total 
number of ions N ,  in each cloud (fi +fi = 1). Also, the 
unperturbed cyclotron frequency of ion in cloud 1 
is assumed greater than that for cloud 2; therefore, 
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m, < m 2 .  Using these conventions, we propose that the 
locking threshold Eqn (2) is in the correct form for arbi- 

dance of ions in each cloud (fi + f 2  = 1, m, < mz): 

trary relative ion abundances provided that the right- 
hand side of Eqn (2) is multiplied by the additional 
factor 1 + p, /R,(f2 -fl). This choice satisfies three 
basic limits: if (i) fl = 0, f2 = 1, or (ii)f, = 1, f 2  = 0 or 
(iii) fl =fz = 0.5, then Eqns (A5), (A6) and (2), respec- 
tively, are recovered. Combining this proposed abun- 
dance dependence with Eqn (2) yields the minimum 
total number of ions to lock the cyclotron modes of two 
cylindrical ion clouds with a variable relative abun- 

N,,, NN 20.5 ( h L R c y ’  Am )[ 1 + pc (fz -h)] 
RC 

(A71 
In the limit R, > > p c ,  Eqn (A7) reduces to Eqn (2) 
which is independent of the relative abundance. These 
trends agree with our numerical simulations and with 
previously published experimental data. 




