Cyclotron resonance phenomena in a non-neutral plasma
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A kinetic theory of electrostatic cyclotron waves in a single component plasma slab of density
ny(x) immersed in a uniform magnetic field B2 is presented. The space charge electric field
E (x)% in such a plasma modifies the single particle gyrofrequency from Q = gBy/mc to
Q,(x) = [Q% — w2(x)]"?in the limit r, /L <1 (wherer, is the orbit sizeand L ! =d In E/
dx), causing the upper hybrid frequency to have the value (92} + ?)"/? = Q. Finite Larmor
radius effects introduce a velocity dependence into the single particle gyrofrequency Q,,
leading to energy transfer to the particles located at the resonant layers where w — kv (x)

= 0,(x) [vg (x)) being the EX B drift velocity]. This energy transfer mechanism is operative
even when k, = 0. Another nonzero Larmor radius effect is the appearance of thermal modes
that are the analogs of Bernstein modes of neutral plasmas. When driven by an external
capacitor plate antenna, these modes exhibit behavior similar to Tonks—Dattner resonances.

I. INTRODUCTION

The description of wave propagation in nonuniform
plasmas is a central theme in several areas of current plasma
research, such as rf heating of fusion plasmas, collective
transport, and drift instabilities. In conventional neutral
plasmas, the nonuniformity is usually associated with den-
sity, temperature, and the confining magnetic field. One oth-
er possible source of nonuniformity is the presence of zeroth-
order electrostatic fields,' e.g., ambipolar fields arising from
the different transport rates of electrons and ions. In order to
highlight the effect of electric field nonuniformity on the
propagation of waves, the present study considers the ex-
treme case of a single component (i.e., fully non-neutral)
plasma®* confined by a uniform, straight magnetic field,
with attention focused on the plasma response to wave fre-
quencies near the vacuum cyclotron frequency €. The equi-
librium static electric field is produced by the plasma itself
and is related to the zeroth-order plasma density through
Poisson’s equation; the nonuniformities in the equilibrium
electric field and density are thus not independent.

From the experimental point of view, single component
plasmas exhibit remarkably long confinement times* in ad-
dition to being very quiescent as compared to most laborato-
ry plasmas. Many theories, including the present one, whose
motivation is to provide a better understanding of conven-
tional neutral plasmas, can therefore be verified in this some-
what novel environment to a degree not attainable in other
plasmas.

Wave propagation in a magnetized nonuniform non-
neutral plasma is primarily governed by two scale length
parameters. The first one, the ratio of the single particle orbit
size (Larmor radius) r, to the wave field scale length k ~!
(perpendicular to the magnetic field) is a measure of the
variation of the oscillating wave electric field across the Lar-
mor orbit. As in neutral plasmas, the value of this parameter
determines the appropriate mathematical description (inte-
grodifferential or differential) of the problem. The second
parameter, the ratio of 7, to the scale length L of the nonuni-
formity, is related to the effect of the equilibrium static elec-
tric field on the zeroth-order orbit of a particle. The zeroth-
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order (or unperturbed) particle orbit, which determines the
single particle properties (such as gyrofrequency, drifts,
etc.) entering into the plasma kinetic response, can in gen-
eral be obtained analytically only for small values of r, /L,
and then as a power series expansion, with higher-order
terms being corrections resulting from the nonuniformity of
the static electric field across the particle orbit.

The present study concentrates on wave phenomena as-
sociated with small values of k7, and hence the description is
in terms of a finite-order differential equation derived sys-
tematically from the exact integrodifferential equation for
the system. In addition, a truncated series in powers of 7, /L
for the zeroth-order particle orbit is used to illustrate the
finite Larmor radius single particle effects on the plasma
response. The most important among these is the fact that
the gyrofrequency of a particle becomes position dependent
although the confining magnetic field is strictly uniform.

For the geometry considered in this paper, namely, a
slab plasma (Fig. 1), whose density n,(x) varies in the x
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FIG. 1. The geometry. The straight arrows indicate the direction of the
equilibrium self-electric field in the single component plasma slab and spi-
rals represent orbits of typical plasma particles.
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direction perpendicular to a strong, uniform confining mag-
netic field B = B2, a particle gyrates about its guiding cen-
ter (at coordinate x) with an angular frequency
Q= [9*—w?(x)]"% where Q=gBy/mc and o,

= [4mg*ny(x)/m]"/? is the plasma frequency. This behav-
ior can be readily understood by considering the x motion of
the particle. In the absence of the electric field (as in a neu-
tral plasma), the magnetic field provides a linear restoring
force — Q1?5 (corresponding to a quadratic potential well in
the displacement variable §), which causes the particle to
oscillate at frequency (). For small values of 7. /L, the effect
of the nonuniform self-electric field can be obtained by using
its Taylor expansion about the guiding center position x. The
leading contribution gE,(x)/m to the expression for the ac-
celeration & gives rise to a drift in the y direction while the
linear term gE { (x)8/m = w2 (x)&8 [using Poisson’s equa-
tion ] weakens the magnetic restoring force and hence modi-
fies the oscillation frequency from  to ,=[Q?
— @2 (x)] "2 Thus the fact that the electric field is genera-
ted by the plasma itself causes the appearance of a collective
feature w, in the single particle property (1,.

An immediate consequence of a single particle gyrating
at frequency £}, (x) rather than the usual value () for neutral
plasmas is that the familiar roles of particle resonance and
collective resonance become in a sense interchanged in single
component slab plasmas. A review of how these resonances
appear in the plasma response makes this clear. In a cold
magnetized neutral plasma, the cross-field behavior for fre-
quency @ near {2 is determined by the dielectric tensor ele-
ment ¢, =1 — /(0 — Q%) = (e —0},)/ (0* — 0%,
where the upper hybrid frequency w,;, is defined by w,,

= (9% + @2)"/% Thus, €,, — « at the single particle reso-

nance w = and €, —0 at the collective resonance
® = w,,. For a neutral plasma slab having the geometry
shown in Fig. 1, the application of an external capacitor plate
field E, exp( — iwt)® results in a plasma electric field
E, = E_/e,,, which vanishes for all x when» = Q and has a
local singularity at layers where @ = @, (x).

In asingle component plasma, however, the single parti-
cle gyrofrequency is £, = (2*> —2)'/? and the corre-
sponding cold plasma dielectric tensor element ¢, is given
by €. =1-—0l/(0"—0}) = (e — Q*)/(0® — O)).
Consequently, ¢, »0asw—Qand ¢,, > 0 asw—Q,. Ina
slab driven by a capacitor field, the plasma electric field
E, = E_/¢,, vanishes locally at layers where w = £}, (x) and
has a global singularity when @ = . It should be noted that
the upper hybrid frequency w,,, = (2} + »})'/?is spatially
constant (and equal to ) only for a completely non-neutral
system. For a fractionally neutralized system, o, is position
dependent and the singularity of the electric field is localized
to layers where @ = @, (x).

The inclusion of finite temperature effects modifies the
nulls and singularities in the response of a single component
plasma slab to an external driver. In what follows, the as-
sumption k, = 0 is made and the effect of nonzero k,, which
is straightforward to include, is only briefly indicated. Thus
the finite temperature effects considered here are basically
those connected with nonzero perpendicular temperature.
There are two such finite Larmor radius effects. The first one
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is the appearance of thermal modes that are the analogs of
Bernstein modes found in neutral plasmas, The differential
equation developed for the system describes the cold plasma
response in the lowest order in k7. For a capacitor plate
antenna, this response (discussed earlier) does not have
wavelike behavior, while an antenna with &, #0 does give
rise to a wavelike response for frequencies near @ (upper
hybrid mode), as well as for low frequencies on the order of
k,vz(x) (diocotron mode), where v (x) is the velocity of
the E X B drift of the plasma caused by the equilibrium static
electric field. Successively higher-order thermal corrections
obtained by retaining higher-order terms (in powers of k7, )
in the differential equation describe wave phenomena near
higher harmonics of the gyrofrequency £},.

The second finite Larmor radius effect is one that pro-
vides a mechanism for the gyrating particles to absorb ener-
gy from the waves at the resonant layers where the frequency
@ — k,vg (x) (Doppler-shifted because of the zeroth-order
E X B drift) matches the gyrofrequency Q,(x) or its har-
monics. To understand this, it is helpful to return to the
potential well description of the motion of the particle. As
described earlier, the linear term in the Taylor expansion of
the electric field weakens the magnetic restoring force and
causes the particle to oscillate at a frequency €2,. Inclusion of
quadratic and higher-order terms causes the oscillation fre-
quency to become velocity dependent since the potential well
is no longer parabolic (or even symmetric). A Maxwellian
velocity distribution of particles gives rise to a corresponding
distribution of gyrofrequencies; hence the resonant denomi-
nators in the differential equation are replaced by the appro-
priate plasma dispersion functions indicating absorption of
wave energy by resonant particles.’ The physical mechanism
for energy absorption is similar to the familar cyclotron
damping (even though in the present system k, = 0).

The paper is organized as follows. The linear Vlasov
equation describing electrostatic waves in a single species
plasma slab is formally solved in Sec. II. The solution, when
introduced into the linearized Poisson equation, yields an
integrodifferential equation, which is systematically ex-
panded in the limit of small kr, into an infinite-order differ-
ential equation involving expressions for the orbit of a single
particle in the equilibrium electric and magnetic fields.
These orbits are obtained in Sec. III, as an expansion in pow-
ers of r,/L (where L is the scale length of variation of the
equilibrium static electric field) using secular perturbation
theory. A Vlasov equilibrium distribution function f,(r,v),
which describes a single species plasma slab such as the one
shown in Fig. 1, is constructed in Sec. IV and density profiles
consistent with the self-electric fields are derived. The distri-
bution f, and the orbits in the corresponding electric field
(and the external magnetic field) are used to find the plasma
response in Secs. V and VI. Section V describes the cold
plasma response for the cases k, = 0 and k, #0. The effects
of finite temperature are discussed in Sec. VI for these cases.
Finite temperature effects include finite kr, effects which
give rise to thermal modes analogous to Bernstein modes
found in neutral plasmas and finite 7./L effects which give
rise to transfer of energy from the wave fields to resonant
particles.
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Il. KINETIC FORMULATION

The linearized Vlasov equation for electrostatic modes
in a single component plasma slab (Fig. 1) propagating per-
pendicular to the uniform constant external magnetic field
B2 is
% e e A 9 + ( Ey(x)% + QVXZ) 9

at or
%

- i g% ok (1
where r and v denote position and velocity in the xy plane.
Also, g and m are the charge and the mass, respectively, of a
plasma particle, Q = gB,/mc is the vacuum cyclotron fre-
quency, f,(x, y) the equilibrium distribution function that
self-consistently produces the electric field Ey(x)X, f;(r,v)
the perturbed distribution function, and E, the correspond-
ing perturbed electric field.

The Green’s function solution to Eq. (1) is

filnvt) = J’dto drydvy 8[r — R(t — ty,ro,¥,) ]
XO[Vv — V(1 — to,r,¥,) 10(2 — 1)
x( - Lg,ryte) L2, 2)
m v,

where 8(¢ — ¢,) is the Heaviside step function and R and V
are the position and velocity at time ¢ of a particle moving
under the influence of the unperturbed fields E,(x)% and
B2, starting at time ¢, with position ry and velocity v,. The
vectors R and V satisfy the equations

av

=L E,X0)% + QVXS, (3a)
dt m
dR _y (3b)
dt
V(O,l'o,vo) = Vo, (3c)
R(O,rgv,) =1y (3d)

The perturbed density n,(r,?) is obtained by integrating f;
over velocity [ making use of the delta function §(v — V) ]:

n,(re) = — —f dtydrydvy 8[r — R(2 — t,,r0%) ]

Ifo(%0,%) .
[}
Since the equilibrium is translationally invariant in y,
the perturbed quantities can be Fourier analyzed in y and
each Fourier component treated separately. Therefore, the
perturbed density and the electric field at frequency w can be
assumed to be of the form

ny(r,t) = n,(x)exp[i(k,y — wt)], (5a)
E,(r,t) = — V{g,(x)exp[i(k,y —w1)]}, (5b)

where ¢, (x) is the x-dependent part of the perturbed com-
plex potential. Inserting Eqgs. (5a) and (5b) in Eq. (4) and
replacing ¢, — ¢ by 7 results in

XE,(rpt)° 4)
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dre=| drydvy 8[r — R( — 7,T0,%) ]

— o0

(d¢‘;:x0) %+ ik ¢,(xo)y)

oY) i (5, — )], ©
v,

Since the system in equilibrium is translationally invariant in
», the particle orbit R can be expressed as

R( — 7,50,%) = X( — 7,%0,¥0)% + o — Y( — 7,%0,%0) 1P

n,(x) =42
m

=X(— 7X0,V0)X + [Vo — Vg (Xp,¥0) T

+ P = 1x0¥0) 15, N
where v, is the E, X B drift along § and the oscillatory quan-
tities X and ¥ satisfy the initial conditions X (r=0) = Xo
and ¥/ (r =0) = 0. Using Eq. (7), the integration over y, in
Eq. (6) yields

n,(x) =ir dTe""‘"f dx, dv,

(d¢1(xo) s
d

Xo

X +ik ¢1(xo)}’) . ;fb(xo,vo)

X exp[ — ik, ¥( — 7,x0,%0) |
XO[x — X( — 7,Xgs¥0) ]. (8)

Substitution of Eq. (8) in the linearized Poisson equa-
tion results in an integrodifferential equation for ¢,. A differ-
ential equation for ¢,, which is useful for small values of kr,,
can also be obtained by expanding the delta function in Eq.
(8) in a Taylor series about X = x,:

S[x —X(— 7x0,%) ]

— z [xO_X( "T)anvo)]p ap 6(x—xo). (9)
p=0 p’ ax?

Substituting Eq. (9) in Eq. (8), the operator d#/dx ? can be
moved outside of the integral symbols since none of the inter-
vening factors depends on x. The integration over x, can
then be performed using the delta function §(x — x,) and
the dummy integration variable v, replaced by v to yield the
differential equation for ¢,:

d2
dxﬁl - k§¢1

= — 4mgn,(x)

2 P
dmq 14 fdv
m ;o p! dx?

(‘ff' =+ )fo(x.v)

dv,
XJ‘) dre T [x—X(—71xv)]?

— ik, ¥( (10)

where the integrals over velocity and time can be performed
once the equilibrium distribution £, (x,v) is specified and the
orbits in the corresponding zeroth-order fields [i.e., E;(x)
and B] calculated.

Since d¢,/dx~O0(k,$,) and x — X~ O(r,), the right-
hand side of Eq. (10) is in a sense an expansion in powers of

Xexp[ —7x%v)],
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k. r.. However, the derivatives with respect to x also apply to
the equilibrium quantities and hence the nonlocal character
of the plasma response is preserved in this description. Since
k,Y~O(k,r,), the exponential in Eq. (10) (which is valid
for arbitrary k,, ) can be expanded to yield an equation useful
in the limit of small k, 7, and k7, :

A ., _ 4 o 1 d?
dx? kyd = m ,,Zop' dx?

d

(dﬁla +"¢‘au,)f°(x’”

xJo dre " [x —X(—tx,w)]?

X’io% [— ik,?( -7xv) ],
(11)
where o, is the Doppler-shifted frequency
0, =o —k,v;(x,v). (12)

It should be noted that Eqgs. (10) and (11) are general
results, valid also for a neutral plasma slab provided that a
sum over all species is performed.®

To proceed further with Eq. (11) for a single compo-
nent plasma slab, the equilibrium distribution function
Jo(x,v) and the single particle orbit in the corresponding
self-electric field must be known. In the following section,
the orbit in an electric field E,(x)X [produced by an arbi-
trary density profile ny(x) such that dEy/dx = 4mgny(x)]
and magnetic field B2 is calculated in terms of an expansion
in the small parameter r,/L. The requirement that E,(x)
and ny(x) correspond to a Vlasov equilibrium limits them to
certain specific forms which will be derived in Sec. IV for a
suitable choice of f;,.

lil. EQUILIBRIUM SINGLE PARTICLE ORBIT

A particle with charge g and mass m moving in the equi-
librium self-electric field E,(x)X and magnetic field B,Z sat-
isfies the equation

= (¢/m)Ey(X)% + QR X, (13)

where R(¢,x,v) is the position vector of the particle at time 7,
starting with the initial conditions R(0,x,v) =x and
R(0,x,v) = v with a dot representing a derivative with re-
spect to ¢ and = gB,/mc. The y component of Eq. (13)
can be integrated subject to the initial conditions to yield

Y=Q(x—X)+vy. (14)
Substituting this result in the x component of Eq. (13) gives
X = (¢/m)EX) — Q*(x —X) + Qu,
IV(X)

=~
where V is the effective potential for the x motion of the
particle. This potential is an extremum for X = X,, where
dV /93X vanishes, i.e.,

(¢/m)Ey(X,) + Q*(x — X,,) + Qv, =0.  (16)

Equation (16) (which is, in general, transcendental) can be
solved iteratively for X,, to yield

(15)
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X,,.=x+0u’+ L do (Qu’)2

0?2 207 dx \ Q?
e (4] (2
Q2 ['6 dx 202 \dx o)’
(17
where
u, =v, + (1/Q2)(g/m)Ey(x) (18)
and
V=02 -2 X _ g2 2y, (19)
m dx
Since
oV o2 2
X?|x=x, =0 -, (X,)>0

for a strongly magnetized system, the effective potential V'
has a minimum at X = X, and the particle executes oscilla-
tions in a confining potential well.

The orbit of the particle is obtained by solving Eq. (15)
in a perturbation series with r,/L as the small expansion
parameter and using the solution X in Eq. (14) to obtain Y.
This procedure is carried out here to obtain the lowest finite
Larmor radius corrections to the orbit. Introducing the di-
mensionless variable { = (X — X,,,)/r, (wherer, =5/ is
the typical size of an orbit), Eqs. (15) and (16) yield

E4vie = [V — QR (X,)]E+2 ———d“’ ) 2
dx |x=x,
" (x)
z‘%zix:xé”*'" (20)

where we have added v to both sides of the equation. Equa-
tion (20) is now in a form suitable for solving by the secular
perturbation method,’ which starts with the ansatz

F=8+&+ -, (21)
where

o =Ag cos(vt + 6,), (22)

v=vy+ v+, (23)

and r./L is the small parameter of expansion. Equations
(21)-(23) are substituted in Eq. (20) and coefficients of
various powers of 7,/L are compared. The result in the ze-
roth order is

1 dol Qu,
20, dx 0

making use of Eq. (17). The first term on the right-hand
side, £,(x), is the single particle gyration frequency in the
zero Larmor radius limit (with the equilibrium self-electric
field being the cause for the position-dependent modification
from the usual value 2) while the second term represents the
lowest finite Larmor radius correction to the gyration fre-
quency.
In the first order, Eq. (20) yields

vo =, (X,,)=0,(x) ) (24)

(25)

" r. do?
VE, =2 c P g2
Gi+ve = V0V1§o+_2 X, £a
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with §, given by Eq. (22). To prevent a spurious secular
growth of {,, the terms on the right-hand side are not al-
lowed to contain terms with frequency v, implying

vy =0. (26)

Equation (25) can then be solved for §, yielding

1 do? 2(1 1 )
LI dar ————cos 2(vt + 6 27
61 7 ax, Aolz 3,700820+0)

as the lowest-order finite Larmor radius correction to §.
The parameters A, and 6, appearing in Eqs. (22) and
(27) are found by imposing the initial conditions

QO
X—X( -—T,X,V) = —'-(Elly

1 dw§(3 o0,
Q% dx

Q do?

v 1
+sinvr}—| 1 "u)] cos2w'[———- L4
W[nl( toar ax )|t 120° dx

Q do? )
sin2vr | ———2u v, |,
+ W(enf P
where
Q dw?
= - —Eu, =0} Xm B
v l(x) zn% dx ¥ ]( )

Equations (14) and (30) yield
Y(—7xv) =y — Y(—7x¥) =

——u +—-—v§)+c0sv‘r[£-u

y—vs(xv)7+ T’( - Ty, V),

1 do?

x—X, = cg(t—O)-erws60+de (r.4,)’
X (1 —4cos26,), (28)
Ux = rcé(t=0) = — WCAQSin 00
2
+_1—dw" (r.Ay)? sin 26,. (29)

6v dX,

Equations (28) and (29) can be solved for 4, cos 8, and
Ay sin @, as expansions in 7, /L and the particle trajectory is
thus determined in terms of its initial position r and velocity
v. Replacing t by — 7 to be consistent with the notation of
Sec. II and including only the lowest-order finite Larmor
radius corrections, it is found that

1 dojf2 Q2 , 1,
ot dx(3 nf“’+3"")]

—_—u — Uy
(n% g

dw?

(30)

31

(32)

where
= Q Q 1 do} (7 Q2 1., Q
Y(~7x,v) = —-?l-:-smvr{-ﬁ-i—u,-i-n? . (6 oY § 3 x)}«r-ﬁ—l-(cosw—l)
X[lx__(l + 2 do? Quy)] sin 2yr [ 1 do? (02u§ —vﬁ)
0, 30} dx Q, 240, Qf dx 0?2

Q
wr—1
* g, 27 )[ (n, dx

1

and the particle drift v, along the y direction is
vy (x,¥) =g (x) — (@2/D) ), =g (X,,). (34)

In evaluating the integrals in Eqgs. (10) and (11), it is
also useful to derive exact relations between the partial de-
rivatives of X( — 7,x,v) and ¥( — 7,x,v). Such relations can
be obtained by shifting the initial time by an infinitesimal
amount A and calculating the corresponding changes in the
initial conditions from Eq. (13). Thus

X(—71x0,,0,) =X(—7—A8x+v, 400,
+ Qu,Ap, — Av, A) + O(A?)
and
Y(—7xv)=y+ ¥(— ToXVx 5V, )
=y+v,A+7( —7—Ax+v.Av,
+ Qu,Av, — Av, A) + O(A?),
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1dw Qu,

o, )] (33)

1
yielding
X X ax ox
Q —Qv, —=0
ar TUa g, TG (352)
and
a‘f' ¥ ay ay
Ll Qu, = v, 2 —0. (3
K e e (359)

¥

The approximate expressions derived in this section for
X and ¥ [Egs. (30)-(34)] have a very complicated depen-
dence on their arguments, but satisfy the rather simple (and
exact) relations (35). These relations will be used in Sec.V to
evaluate the integrals in Eqs. (10) and (11).

The orbit expressions derived in this section are valid for
an arbitrary density profile 7,(x) of a single component
plasma producing a self-electric field E,(x)% with dE,/
dx = 4mgn,. The requirement that the plasma be in Vlasov
equilibrium provides another relation between n, and E,
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through the distribution function. The problem of determin-
ing ny and E, self-consistently is treated in the next section.

IV. VLASOV EQUILIBRIUM

In this section a Vlasov equilibrium distribution func-
tion describing a single component plasma slab (of finite
width in x ) immersed in a strong uniform external magnetic
field B,Z (see Fig. 1) is constructed and density profiles con-
sistent with the self-electric fields are obtained. The equilib-
rium is, however, not a thermal equilibrium and hence the
phenomena to be studied using this distribution function
must occur on a time scale short compared to the character-
istic time of plasma expansion produced by interparticle
collisions.

In constructing the distribution function f,(x,v), mo-
tion along the z direction is ignored as in the previous sec-
tions and thus v refers to the velocity in the xp plane. Any
distribution function constructed from the single particle
constants of the motion, energy € = } mv? + gd,(x), and the
canonical momentum p, = m(v, + {Ix) represents a Vla-
sov equilibrium distribution. The specific choice

fo=Cexp{ — [’ + (29/m)do(x)1/25°
— (x +v,/Q)%/21%}, (36)
where ¥ and [ are given parameters, C a normalization con-
stant, and ¢,(x) the self-consistent electric potential, de-

scribes a realistic bell-shaped density profile peaked atx = 0.
With a rearrangement of terms, f; can be put in the form

20 AW
X q¢o(x)]
20024+72) mv* |
where 7, = 0/1), showing clearly that in a local frame drift-
ing with velocity
Vo= —xQ[r2/1*+ )], (38)

the distribution function f;,(x,v) is a bi-Maxwellian with the
effective temperatures in the x and y directions being

2 2 r2 ﬂ 2
fo(x,v)=Cexp[—&——l I (vy +x012;r§)

(37)

T, = mv?, (39a)
T, =ml**/(I1*+172). (39b)

The potential ¢y(x) in Eqgs. (36) and (37) is not arbi-
trary but has to be determined as the self-consistent solution
to Poisson’s equation

d2
—%: — 4mqny(x)
= — 4mgno(O)exp( — L [4o() — $o(0)]
mv
2
___2’_‘__) (40)
201+ 1)

where n,(x) is obtained by integrating f, (x,v) over velocity.
Using this expression for n,(x) in terms of ¢, (x), it can be
shown that the drift velocity v, given by Eq. (38) is the sum
of the drift velocity v (x)y = — c(VdoX2)/B, resulting
from the equilibrium electric field and the diamagnetic drift
velocity — 02(VnyX2)/Qn,.
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The solution of the nonlinear differential equation (40)
for the self-consistent potential ¢,(x) is facilitated by the
introduction of the scaled variables

Y= — (2/mP®)[$o(x) — $o(0)] — x*/2(1* + 1),

(41a)
A% = mv/4mqny(0), (41b)
E=x/Ap, (41c)
A=A%/(%*+ 1), (41d)
in terms of which Eq. (40) takes the form
—dﬁg =e¥—A4. 42)
d&?

Since ny(§) =ny(0)exp ¥, ¥ must approach — o« for
|€ |- oo in order that the plasma be bounded. From the
structure of Eq. (42), it follows that the necessary and suffi-
cient condition for a bounded density profile is 4 > 1, which
from Eq. (41d) implies Ap > 7. or > w, (0) (for all values
of D). The last inequality is the slab analog of the Brillouin
condition setting the limit for the maximum density that can
be confined by a given magnetic field. Since the calculation
of the unperturbed orbits (Sec. IIT) is possible only when 7,
is small compared to the scale length of variation of the equi-
librium density profile, the present study assumed
O>w v (0).

The physical significance of the parameter 4 can be un-
derstood by noting that a particle drifting with velocity v,
across the magnetic field B,2 experiences in its rest frame an
effective electric field v, X B,2/c. This field can be equiv-
alently thought of as arising from a fictitious neutralizing
background consisting of charges — ¢ having the density
[using Eqgs. (38) and (41d)]

N= — (1/4mq)V-[ (vp XBy2)/c] = Ano(0).  (43)

Thus the confining effect of the magnetic field can be simu-
lated by a stationary uniform charge-density neutralizing
background. If 4 > 1, then N > n,(0) and the confining force
caused by N overcomes the self-repulsion of the plasma. On
the other hand, if 4 <1, then N <n,(0) and the plasma is
unconfined. If 4 = 1, the two forces are in equilibrium for
ny(x) = ny(0) = N.

The self-consistent density profiles and the correspond-
ing electric field potentials obtained from numerical solu-
tions of Eq. (42) are displayed in Fig. 2 for the cases 4 = 1.1
and 4 = 2. The closer the value of 4 is to 1, the wider the
density profile is (as measured in terms of the central Debye
length Ay ). Also, in the limit 4 — 1, the width of the density
falloff region measured in terms of A, approaches a constant
~5. Note that from Eq. (41d), the assumption 7, €1, im-
plies /=Ap, for values of 4 close to unity.

As indicated at the beginning of this section, the distri-
bution function f;, given by Eq. (36) describes a Vlasov equi-
librium and not a thermal equilibrium. The distribution
function exp(ae + Bp, ) (@ and Bbeing constants) associat-
ed with thermal equilibrium, however, does not describe a
bounded plasma slab; the corresponding self-consistent den-
sity profile increases monotonically on either side of x = 0.
The nonthermal equilibrium nature of f; given by Eq. (36) is
reflected in the fact that the total drift [Eq. (38)] has a
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E=x/\p

FIG. 2. Self-consistent density profiles (top) and corresponding electric
potentials (bottom) in a single component plasma for 4 = 1.1, 2.0 {Eq.
(42)].

shear. Inclusion of collisions would create a collisional drag
force (acting along §) between neighboring layers moving
relative to each other. This force, in the presence of the mag-
netic field B2, creates a new drift along % as a result of which
the plasma expands. Thus collisions will destroy the Vlasov
equilibrium described by f;,. The wave analysis is therefore
applicable only to time scales short compared to the colli-
sional expansion time.

V. COLD PLASMA RESPONSE

The cold plasma response is derived in this section as a
benchmark and attention is focused on its singularities
(which are rectified when thermal effects are included). For
this purpose, it is convenient to truncate the differential
equation for ¢, obtained in Sec. II to include only the lowest-
order thermal effects. Using Eqgs. (30)-(35), and the equi-
librium Vlasov equation,

v, o gy 9o _q, Sfo_g, (44)
¥ ox 7 v, av,
the truncated version of Eq. (11) can be put in the self-

adjoint form,

d2¢1 2 1
k2= LB+ B +— ﬁ +— B ¢,
dx?
4 1s 1 1p: @:]
+ dx[(al+ 2ﬁ2+ 6’93) dx
=)
—\— . 45
‘l—dx2 6 dx (49
In Eq. (45), primes denote derivatives with respect to x and
@, = (-‘9—f-°) , (46)
av./,
, 8f>
=ik (=2} | 47
B, 1y<avy , (47)

where the operator { ), is defined by
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gx,v)), = J dvgJO dre= " [x —X(—71xv)}?

Xexp[ — iky?( —7xv)], (48)

with X and ¥ given by Egs. (30)—(33).

Equation (45) includes all the lowest-order thermal
corrections (proportional to 7°). Its self-adjoint structure is
a reflection of the conservation of energy in this system.

Ignoring the thermal corrections to Eq. (45) gives the
cold plasma response. In the cold limit, the only contribu-
tions to the right-hand side of Eq. (45) are

-k J“’ [ kymuy( 11 )]
d, | 208 \o,—v o, +v

kQ?
~k, Q':O _g_(_l_)_,_ - _Zﬁo__z, (49a)
03 dx \wp 0 o -0
a 1
pot B[l L)
Q av, ®, &,—v o +V
k, £
— (49b)
@p a)D'—Ql
and
1 1 1
=—— [ ay ( - )
% ZQIJ ﬁJml-—v @, +v
ny
SRR S (49c)
wp — 0}

where partial integrations with respect to v, and the norma-
lization condition § dv f, = ny(x) have been used; the quan-
tity @, is defined by Eq. (12) and o, is defined as

wp =+ (k,/Q) (¢/m) Ey(x) =0 — kv (x). (50)

Equations (45) and (49) yield the second-order differential
equation for the cold plasma response

d (1_ L )%]_[_"yﬂi(l__ % _ )
dx 2 —-0%) dx wp dx w3 — O

+k§( _Qz)]¢1—0 (51)

It should be noted that in the limit of zero temperature,
the distribution function f, of Sec. I'V leads to a rectangular
density profile, since the width of the density falloff region in
terms of the central Debye length A, is a constant. [For a
nonzero density profile one must also have 4 — 1, where 4 is
defined by Eq. (41d).] Thus E,(x) and vz (x) are linear
functions of x and ? and Q4 are position independent with-
in the plasma. The result (51) is, however, more general
[since the steps used, Eqgs. (49), in deriving it do not depend
on any specific choice of f;] and is valid for any density
profile that can be self-consistently obtained from an f, in the
cold limit.

As indicated in the Introduction, Eq. (51) can be ob-
tained from the neutral plasma result by including the
Doppler shift resulting from E X B drift and by replacing the
cyclotron frequency 2 by the effective single particle gyra-
tion frequency Q, = (2* — w?)'/?. The replacement 2 - Q,
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should not, however, be confused with the transformation
Q- Q — 2w, used by Davidson® to formally obtain non-neu-
tral plasma waves (for a rigid rotor of angular frequency w, )
from neutral plasma results. The physical origins of the two
transformations are entirely different. The latter is caused by
the Coriolis force in the rotating frame whereas the former is
caused by the modification of the particle orbit resulting
from the gradient in the electric field. In fact, Q,(7) for the
general cylindrical case has the form

dw 172
Q,(r) = [[Q—Zwe(r)](Q—Zwe(r) —~r dre (r))] ,
(52)

where
w,(r) =517L dr rei(r) (53)

is the E X B rotation frequency. For a rigid rotor, »} and o,
are constant and 0, - — 2w,. However, the modification
discussed in the present paper is associated with the dw,/dr
term and can be obtained in the transition to the slab model
by considering a cylindrical shell R <7 <R + A and taking
the limit R> A. Then w, ~»? A/QR -0, rdo,/dr-o}/Q,
and Q,(r) - [2* — i (r) ]~

Solutions of Eq. (51) are next investigated for the cases
k, =0and k, #0.

(a) k, =0: In this case Eq. (51) can be integrated once
with respect to x to yield

[1—-wl/(e®— Q})]E,, =E,

or

w® — Q2 w?(x)
e S (L) L
where E_ is the vacuum field generated by external capacitor
plates assumed to be located where the plasma density is
negligible. Equation (54) predicts that E, has a global reso-
nance when o = ) and has local nulls at layers where
o = ;(x). It is shown later that thermal effects modify
both these features and introduce energy absorption by par-
ticles at the w = Q,(x) layers. As follows from Eq. (54), a
plotof E,, vsx (for E, >0, w < ) is identical to the plot of
wlvs x (Fig. 2), inverted and repositioned vertically so as to
pass through zero at the w = Q,(x) layers.

(b) k,50: Solutions of Eq. (51) for k,#0 describe
waves propagating along the y direction. Equation (51) has
singularities at layers where wp=w —k,vg(x)

= +0,), wp= (D +0?)"?*=+Q, and 0, =0; a
study of the behavior near these layers shows that the exact
solutions of the equation are finite and continuous at the
wp = + ,(x) layers while at the w, = + Q layers (and
also at the w, = 0 layer), one of the two linearly indepen-
dent solutions exhibits a logarithmic singularity. These sin-
gularities are, however, removed when thermal effects are
included, as shown in the next section. A detailed analysis of
the properties of Eq. (51) is outside the scope of the present
publication.

From Gauss’ law, the electric field E,(x) [and hence
Ve (x) = qEy(x)/(mQ)] increases monotonically with x,
passing through zeroatx = 0. Thusw, =@ — kv (x) isa

3100 Phys. Fluids, Vol. 30, No. 10, October 1987

1 T T T Px 3 T T 1
7 AN
/ \
// \
\
$yix) // \
¢1(-'b) \
/ wD=.ﬂ.1(X)\

-1 0 1
l/lb

FIG. 3. The solution of Eq. (51) for the density profile shown in dashed
lines and for @, (0)/Q = 0.1, 0/ = 0.9975, k,x, = 0.04. The boundary
conditions are ¢,( — x,) #0, ¢,(x,) =0.

monotonic function of x and the singularity w, = Q can
occur, at most, at one value of x. Similarly, one can have at
most one @, = 0 singularity layer inside the plasma. On the
other hand, since ,(x) is an even function of x having a
single minimum at x = 0, the equation w, = Q,(x) can
have 0, 1, or 2 roots depending on the values of w and k,.
Figure 3 displays the solution of Eq. (51) for the density
profile shown in dashed lines and for 0{”/Q =0.1, w/
1 =0.994, and k,x, = 0.04; the boundary conditions are
#,( —x,)#0, ¢,(x,) = 0. The value of w and k, are such
that the singularities @, = £ and @, = 0 are absent. The
equation @, = {1, (x) has two solutions indicated in the fig-
ure, but at these layers, the solution and its derivative are
continuous.

VI. THERMAL EFFECTS

Two nonzero-temperature effects are considered here.
The first one, a kr, effect, gives rise to successively higher-
order thermal modes (analogs of neutral plasma Bernstein
modes) as higher-order terms in powers of k7, are included
in the differential equation for ¢,. Equation (45), which is
accurate to O(k 2r2), describes the behavior of waves near
the first two harmonics of the gyrofrequency 2, (and also
the low frequency diocotron wave). The second effect arises
for nonzero values of 7./L because the equilibrium electric
field E,(x )X modifies the single particle orbit and in particu-
lar introduces a velocity dependence in the particle gyration
frequency. This effect causes the absorption of wave energy
by particles at layers where @ — k,vz(x) = + Q,(x) and
o — k,vg (x) = 0. For clarity of exposition, each of these
effects is considered separately. Thus approximate equilibri-
um particle orbits,

x —X(—7xv) = (v,/Q,)sin Q7

+ (Qu, /93 ) (cos Q7 — 1), (55a)
Y(—7xv) = —vg ()7 + (Qu,/Q3)(cos Q7 — 1)

— (Q%u, /9% )sin Q7, (55b)

Q,(x) = [ -} (x)]"? (55¢)
u, =v, + (1/Q)(¢/m)Ey(x) = v, — vg(x), (55d)
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which do not include correction resulting from nonzero
r./L [see Eqs. (30)-(34)], are used to evaluate the right-
hand side of Eq. (45) toillustrate the lowest-order &7, effect.
To highlight the 7. /L effect, equilibrium particle orbits with
the most important nonzero 7./L corrections [i.e., Eqs.
(55) with the replacements £,(x)7-v(x,v)7 and
vg (x)T—-v,(x,v)7, where v and v, are given by Egs. (31)
and (34), respectively] are used in the differential equation
for ¢, that contains no finite k7, corrections; the result corre-
sponds to the modification of the “cold” wave equation (51)
when the integrals B, 3, and a, [Egs. (49)] are evaluated
using the expressions (31) and (34) for v and v,, respective-
ly.

As in the previous section, the cases K, =0 and &k, #0
are considered separately.

(a)k,=0

(i) kr, effects: For k, = 0, it follows from Eq. (47) that
B, = 0 for all p. Thus there is no term proportional to ¢, in
Eq. (45), which can now be integrated once with respect tox
to yield a second-order differential equation for the wave
electric field E,, = — d¢,/dx:

2
(1 + 47, (k, = 0))E1x
m

2
1 d (47rq (56)

14 — i@_) =

6 dx\ m as(k, =0 dx Ee,
where @, and a, are given by Egs. (46) and (48) with
k, = 0. Using (x — X) from Eq. (55), the time integral in
Eq. (48) can be readily done and the result [using Eq. (44) ]
expressed in terms of integrals of the form §dv v} f. Such
integrals can be reduced to powers of v multiplied by the
density n,(x) (or its derivatives) as shown in the Appendix.
Using these results, one obtains

(4mg*/m)a,(k, =0) = — /(0 — N]) (57a)
and
- (] )
a,(k, =0) = — 60" —— —_ .
m QM \* -0 o -—-40}
(57b)
Thus Eq. (56) takes the form
B
dx| Q@ \*— Q0 w*—40%) dx
a)2
+ 1————”—)EX=EC, 58
( R 1 (58)

where the first term on the left-hand side is the lowest-order
(quadratic) kr, correction to the cold plasma result, Eq.
(54).

Replacing dE,/dx by ik, E, in Eq. (58) with the driver
E_ = 0 yields the approximate WKB dispersion relation

(0)2—02)((02—40%) 172
370202 ) > 9
cp

where
1 dwl/dx (0° — Q%) (0 — 40%) — 4w}
2 @ (@ — 0}) (0 —40%)

The WKB wavenumber &, given by Eq. (59) has singulari-

(60)
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FIG. 4. Warm plasma dispersion obtained from the approximate WKB so-
lution, Eq. (61). These non-neutral Bernstein modes have cutoffs at the
“upper hybrid frequency” 2 and the second harmonic of the single particle
gyrofrequency Q,(x).

tiesatw = Q,(x) and w = 20, (x). An analysis of the differ-
ential equation (58) near these layers, however, shows that
the two linearly independent solutions of the homogeneous
differential equation are both finite and continuous at these
layers.

Ignoring the density derivative correction caused by Q,
Eq. (59) takes the form of a Bernstein wave dispersion rela-
tion (near cutoff)

(k.r.)? = (0 — @) [0 — 407 (x) ] /3Q% (%),

(61)
which is displayed in Fig. 4. These non-neutral Bernstein
modes propagate for < 2, @ > 202, [with cutoffs at ® = £,
20,1, which is consistent with the neutral plasma results
since in the present single component plasma, the single par-
ticle gyrofrequency is ), and the collective “upper hybrid”
frequency is Q = (0} + »2)"/%. Note that the condition
k,.r. <1 required for the validity of Eq. (58) implies, from
Eq. (61), that the frequency w be close to the cutoff values £2,
29),.

As mentioned earlier in Sec. V(a), the presence of ther-
mal modes for nonzero values of k7, removes the global reso-
nance of the cold plasma E,, at w = ). For capacitor plate
antennae positioned atx = 4 x,, Eq. (58) canbeintegrated
twice for @ =  to yield

E,(x)=~E [1— (x? —xi)/2r§], (62a)
so that
E, (0)=E.x2/2r (62b)

is large but finite.

The wave electric field E,, produced by a uniform exter-
nal field E, can be obtained for any @ by numerically inte-
grating Eq. (58). The undriven (E_, = 0) waveforms have a
definite parity (in x) as is clear from Eq. (58). The even
solution, satisfying the conditions E, (0)=1 and
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FIG. 5. The undriven solution E,, (of even parity) of Eq. (58) for the
A = 1.1 density profile of Fig. 2 and for w,(0)/Q=r./Ay =0.1. The
boundary conditions are E|, (0) #0 and E {, (0) = 0. The scale for E,, is
arbitrary.

dE,, /dx|,_, = 0isshownin Fig. 5 for the 4 = 1.1 equilib-
rium density profile with w,(0)/Q =r./Ap =0.1 and &/
0 =0.9975.

The increase in the wave amplitude near the plasma
edge seen in Fig. 5 does not result from any resonance but is
related to the decreasing density profile. This can be readily
seen from the approximate WKB solutions (59) and (60).
Near the ends, wf, —0and hence @~ (d /dx) (In w,) and the

1 1 11 1 L 11 1

(8]

§:x/X

FIG. 6. The driven solution E,, of Eq. (58) for the 4 = 1.1 density profile
of Fig. 2 and for w,(0)/Q=r/Ap =0.1 and /0 =0.9975. Here
E (—x,)=E, (x,) =E,. The cold plasma response is shown by the
dashed line.
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WKB wave amplitude ~exp( — fdxImk,) ~0, 1 and
thus is proportional to [n4(x)] ~ /%

When the driver is on (E_#0), the thermal mode pat-
tern appears superposed on the cold plasma response given
by Eq. (54). Figure 6 displays E,, for the driven case for the
same parameter values 4 =11, @,(0)/Q2=0.1, w/0

=0.9975, and the boundary conditions E,, =E, at
x = + x,, the position of the capacitor plates. The collective
electric field in the plasma becomes large as the driver fre-
quency o approaches values o, for which the undriven E,,
has nodes at x = 4 x,. These are the analogs of Tonks—
Dattner resonances’ in neutral plasmas. Quantizing
k. (x,) given by Eq. (61) to fit the antenna spacing yields
approximate values of w,, . Forw < Q, k, (x,) is real for all x
and the quantization condition determining @, takes the
form

nmw

" dxk, (xw,) =
J._Xbx (x,w,) o

(63)
b

The undriven solutions have even parity (in x) if » is an odd
integer and have odd parity if # is even. The solutions dis-
played in Figs. 5 and 6 correspond to n = 47 for which w,
has the value 0.997 508 650). The amplitude of the thermal
mode defined as the difference in values of the central extre-
mum and the neighboring extremum of Fig. 6, is shown asa
function of w in Fig. 7.

Near the second harmonic, Eq. (61) predicts propaga-
tion if @ > 20, (x). Since ;(x) has a minimum at x =0, a
capacitor plate antenna oscillating at a frequency o such that
20,(0) <w <2} creates a thermal mode pattern [super-
posed on the almost constant cold plasma response given by
Eq. (54)] which has a propagating character in the center of
the plasma slab and is evanescent near the edges. Again, the
amplitude of the thermal mode pattern is large for certain
discrete values of w. Figure 8 displays the numerical solution
for E,, when 4=1.1, 0,(0)/Q=r./Ap, =0.1, 0/

=1996 with E,, ( +x,) =E..

(it) r./L effect: For k, = 0, the coefficients 8, and 8,
are zero, and Eqgs. (49¢), (31), and (37) yield

T T 1 T T 1 T T T
1000 1
. I
2
=
€
5
s
§ 500 p
0 1 L 1 1 ) N 1 N n
-9 0 5

(w/wyp=1)x 107

FIG. 7. The amplitude of the thermal pattern (defined as the difference
between the central minimum and the neighboring maximum in the driven
solution E,,/E, of Fig. 6) as a function of @ near @, = 0.997 508 65(2 cor-

responding to n == 47 [see Eq. (63)].
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FIG. 8. Thedrivensolution E,, of Eq. (58) near the second harmonic. Here
A4=11,0,(00/0=0.1,0/Q =199,and E,, ( — x,) = E,.(x,) =E,.

a1= -

no(x)( m )mjw dv. e~ ™ /2T,
20, \27T, —.

1
20?2

1 dwz -1

_(a’+ﬂ‘_292 ix (vy_v")) ]

_ng w—Ql) (a)+0.1)]
= z —z(L+h), (64
ZQ,Aw[ ( Aw Aw (o4

where Z is the plasma dispersion function'® and

dwz —1
X[(a)—()l+ _dxp (vy—vD))

NN (T,)m
w=—|—2]| =
Q2| dx |I\2m
dw? r @
= ra |22 | 022 9]0 (%) (2)
rel | | 2 G +10)] L/ \a?

(65)

In obtaining Eq. (64), the usual adiabatic switching ap-
proximation (i.e., ® = @ + i0) is made. Using Eq. (64), the
cold plasma response (54) is modified (for @ >0) into

@i [ 1 w—Q 1
1+-—2 [—z( 1) ”E=E 66
[ +2a, Aw Aw +a)+Ql ! (66)

by the inclusion of nonzero r./L corrections to the equilibri-
um single particle orbits. At layers @ = Q,(x), where the
cold plasma E,, vanishes, the Z function is finite (and has
the value i7'?) and E,, is no longer zero
(ImE,, ~O[(r./L)E,], ReE,, ~O[(r./L)’E.]). Fig-
ure 9 displays the real and imaginary parts of £,, produced
by an external driver E, for the parameter values 4 = 1.1,
w,(0)/Q =0.1, and 0/ = 0.9975.

The complex character of the Z functions also implies
that it is possible for the particles at the resonant layers to
absorb energy from the fields. The rate of energy absorption
per unit volume is 1/4( j¥,. E,, +Jj.E ¥.), where the linear-
ized plasma current is j,, = iw(E, — E,, )/47. Using Eq.
(66), the power absorbed per unit volume is
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FIG. 9. Real and imaginary parts of the electric field E,, given by Eq. (66)
for4 =1.1,0,(0)/Q = 0.1, and 0/ = 0.9975.

P= _—a)_Ez ImElx
8r ° E,

2
2 (1)

E "lez(“’"nl)

‘202 Aw Aw

@l 11 w—Q 1 1!

X111 4 "[-—z( 1) ] )
” 20, L Aw Aw -l—a)-l—().l

(67)

The normalized power absorption 87P /wE ? is just the neg-
ative of Im(E,, /E_) displayed in Fig. 9. The width of the
resonance region where the energy absorption takes place is
o(r,).

The physical mechanism for energy absorption is simi-
lar to the familiar cyclotron damping (even though in the
present case k, = 0). Particles in the resonant region experi-
ence a collective electric field which continuously acceler-
ates them or decelerates them depending on their phase with
respect to the field. Since the rate of change of energy is
qE,*v, where v is the particle velocity, the accelerating parti-
cles gain energy at a faster rate than the decelerating parti-
cles lose it. Thus the energy transfer is always unidirection-
al—from the wave to the particles. The largest number of
particles whose velocity-dependent oscillation frequency v
[Eq. (31)] can match the wave frequency are at the layer
where w = ,(x) and their number falls off rapidly on ei-
ther side of this layer within roughly a Larmor radius. Thus
the energy absorption profile is a bell-shaped curve of width
~Q(r.) centered at the @ = (},(x) layer.

Allowing nonzero k, in the present problem produces
conventional cyclotron damping. This additional damping is
negligible compared to the finite r./L damping if

k(T,/m)"*¢Aw

or (68)
k' L(Q/w,) (T, /T,

=9
87
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(5) k, 740

(i) kr, effect: Evaluation of the coefficients «,, and 3,
in Eq. (45) using the orbit expressions (55) leads to a
fourth-order differential equation for ¢,, which includes the
lowest-order (quadratic) finite k», corrections to the cold
plasma terms. The general differential equation that in-
cludes the density gradient effects and the drift effects on the
non-neutral Bernstein modes (and also the low frequency
diocotron mode) has been obtained but since it is rather
lengthy, is not presented here. An extension of the approxi-
mate dispersion (61) to include nonzero k, can be readily
obtained by replacing d /dx by ik, in Eq. (45) and ignoring
the primed quantities. This leads to

k:+k;=(4ng’/m)[Bo—ki(ay+1B,) +ikias].
(69)

Using Eq. (55) and ignoring derivatives with respect to x,

b 00 n | 30 P, ’
T w02 O () —03) () —403)
(70a)
6k 2077
fy= — 2" %o : (70b)
0 (@) — 0D (ep —407)
S 5 n,
' vl — Q2 (0 —0) (e} —403)
(70c)
a, = 187 ) , (70d)
? (0} — 02)(0? — 402)
and therefore Eq. (69) takes the form
]

_d..([l +_w12’_ [_l_z(u)__l_z(ﬂj'_ﬂl
dx 20, LA A_ A, A,

2
[(klrc )4 + 2(klrc)2(kyrc)2%’é~]

(0} —407) ( o}
— k c)2 2 __02 _ k rc)2 P ,

——-————30260’2, (k r.)"(wp ) — (&, —.Q?
(71)

where k2 = k% + k2. Without the small terms (propor-
tional to /0 on both sides) Eq. (71) is the same as Eq.
(61) (with k2 replacing k 2 ) and predicts Bernstein modes
propagating below @ = ) and above @ = 2{},(x). The last
terms on either side of Eq. (71) represent the symmetry
breaking effect caused by the gradient in the equilibrium
electric field.

As in Sec. VI (a), for a fixed value of k,, the plasma
response is enhanced for quantized values of the driver fre-
quency o for which the waves have nodes at the antennae.
Since waves with finite k£, sample the plasma drift which is
an odd function of x, they do not have a definite parity.

(ii)r,/L effect: Equations (31) and (34), which include
the lowest-order r_/L corrections for v and v,, are used in
evaluating the expressions (49). Since

a)lﬁwb + ky ((012,/9?)(0, - vD)’

(72a)
_ o’ 1 do?
Wy :F‘Vz(a)p +‘Q'l) + (ky n—;i—za?—;ix—p)(uy -— UD),
(72b)
and
d m
b-viy"= =)o (73)

nonzero r,/L corrections modify Eq. (51) into

<)

_k2[1+——"’: Z'(ﬁé’_)_“’zﬂz[(“”’_ﬂ’) Z’(
g Q2A2 A, 203 A%

@p —'Ql) _ (wp +8y) Z,(‘"D +‘Q'l)]¢
A_ A% A, '

_ky¢l__d_[ﬂw,2, ﬁ’_"_zl(&’_)_ (@p — ) zZ'
dx { 02 | A? A, 242
where
2T \'? @ 1 do?
A, = ’) k, Lr— F 75a)
* ( m r o +29f dx ¢
and
2T 172 (1)2
A0=( my) kyé- : (75b)

Again, the presence of the Z functions removes the singulari-
ties at w,, = £, and w, = 0 and gives rise to absorption of
energy by particles at these layers.

VII. CONCLUSIONS

The response of a magnetized nonuniform plasma slab
near the cyclotron frequency is significantly modified if the
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(a)D _Ql)_ ((L’D +Ql)

A 242,

Z/(wD +Ql)]] =o’ (74)
A+
I

plasma is non-neutral. In the extreme non-neutral case of a
single component plasma, the self-electric field of the plasma
modifies the single particle gyrofrequency from the vacuum
value Q=g¢gB,/mc to a position-dependent value
Q,(x) = [Q? — »? (x)]"/? providing an example of a col-
lective plasma feature, the equilibrium electric field, affect-
ing a fundamental single particle property, namely, the gyro-
frequency.

A consequence of the modification of the value of the
gyrofrequency from  to Q,(x) is that the upper hybrid
resonance frequency is modified from the usual position-de-
pendent value [02+w?(x)]"? to a constant value
[0} +®2]"2 = Q. Thus, with regard to position depen-
dence, the roles of the single particle resonance and the col-
lective resonance encountered in neutral plasmas are inter-
changed in a single component plasma.
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In this work, starting from a self-consistent Vlasov equi-
librium, the cold plasma response near the cyclotron fre-
quency and the kinetic modifications to it are obtained from
a systematic expansion of the integrodifferential equation
satisfied by the wave potential solution of the linearized Vla-
sov—Poisson equations. One of the kinetic modifications is
the introduction of a velocity dependence into the single par-
ticle gyration frequency £, (x), leading to absorption of en-
ergy by particles at the resonant layers, where the frequency
equals , (x). This absorption mechanism is present even
when k, = 0 (where k, is the wavenumber parallel to the
magnetic field) and when the magnetic field is strictly uni-
form. Another feature, uncovered by the kinetic theory, is
the presence of thermal modes that are the analogs of Bern-
stein modes of neutral plasmas. A truncated second-order
differential equation has been derived to describe these
modes near the cyclotron frequency and the second harmon-
ic, including the effects of EX B drift and diamagnetic drift.
The equation predicts wave propagation for (}; <@ < Q and
for @ >2Q,. These modes can be driven by an external ca-
pacitor plate antenna and can reach large amplitudes at cer-
tain frequencies which are the magnetized non-neutral plas-
ma analogs of Tonks—-Dattner resonances.
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APPENDIX: EVALUATIONOF sdvuyv; 1o

Integrals of the type § dv u}'v} f;, which are used in Sec.
V in evaluating the orbit integral in Eq. (11), can be reduced
to derivatives of the equilibrium density 7,(x) multiplied by
powers of U. The equilibrium Vlasov equation, which has the
form [see Eq. (44)]

—u 9o _ (li_i)
“ a0 e o

m—1

is multiplied by »’ ~ 'v; * ! and integrated over velocity. Par-
tial integrations over v, on the left-hand side and over v, on
the right-hand side and a rearrangement of the x derivative
yield

(n+1) fdvuf'v,’ifo

(AD)

1 d

=——|dvur—rt?
Q dxf i’ Jo

92
+(m—1)612—fdvu;"_2v;+2fo, (A2)
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where the identity

_4 dE
m dx

0 =07 — 0 =03 (x)

has been used.

With repeated use of the transformation (A2), the
right-hand side of (A2) can be expressed solely in terms of
§ dv 1 f,and its derivatives with respect to x. For f;, given by
Eq. (36), one obtains

J-dvvﬂﬂ,
_[lp=1D(p—3)-3.1]"ne(x) (p=even),
0 (p=o0dd).

Thus integrals of the type § dv u;'v} f; can all be reduced to
derivatives of n,(x) multiplied by powers of .
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