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An experiment designed to elucidate the features of cyclotron resonance in a rotating 
cylindrical pure electron plasma column is described. The density is well below the Brillouin 
limit and varies with radius, as does the rotational angular velocity. Thus the steady 
state is not the rigid-rotor equilibrium which is frequently studied theoretically. The readily 
observed modes are found to have k,zO and m= 1,2,3,4... (eikg+ime) with frequencies 
which are within a few percent of the cyclotron frequency ( 140 MHz). A single m = 1 mode 
is found that is downshifted from the cyclotron frequency by an amount equal to the 
m= 1 diocotron frequency. For each of the higher m values, bands of closely spaced discrete 
modes are found which are upshifted from the cyclotron frequency by the Doppler 
effect of rotation. The bands of discrete modes are explained as radially trapped azimuthally 
propagating Bernstein modes in a rotating plasma and approximate theories for these 
modes are outlined. By comparing the results with experiments, plasma parameters such as 
the ratio of Larmor radius to plasma scale length, the central rotation frequency, and 
the ratio of peak to average density can be inferred. 

I. INTRODUCTION 

Non-neutral plasmas have been the subject of extensive 
study during the past decade.lp2 Low-frequency phenom- 
ena such as approach to equilibrium,3 stability of low- 
frequency modes,ll and transport’ have been studied exper- 
imentally. High-frequency phenomena in non-neutral 
plasmas have not been studied experimentally. However, 
cyclotron resonance is used for high precision mass 
spectrometry,6 but generally at densities where plasma ef- 
fects are unimportant.7 Plasma effects on cyclotron reso- 
nance, e.g., upper-hybrid resonance, have been studied ex- 
tensively in neutral plasmas, as have cyclotron harmonic 
effects.’ It has also been shown theoretically how some of 
these effects should carry over to non-neutral plasmas in 
the special case of rigid-rotor equilibria.9’2 The rotation of 
non-neutral plasmas causes significant differences from the 
neutral plasma phenomena, and the existence of an angular 
velocity profile causes significant differences from the rigid- 
rotor predictions. In this paper we report new high- 
frequency measurements of plasma effects on cyclotron 
resonance in a pure electron plasma column which dem- 
onstrate the effects of plasma rotation and the existence of 
radially trapped Bernstein waves,” similar in some re- 
spects to the Buchsbaum-Hasegawa modes in a neutral 
plasma.” We also sketch out simple explanations of the 
phenomena. 

II. EXPERIMENT 

In this experiment we employ the Penning trap config- 
uration, exploited so successfully by the San Diego group. 
Electrons are contained radially by a magnetic field, which 
results in rotation about the axis of symmetry, and axially 
by electrostatic potentials. Electrons are injected (from a 
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spiral filament), trapped, then dumped in a repetitive 
cycle.t2 Figure 1 is a schematic drawing of the experiment 
and the parameters of our device are shown in Table I. 
During the trapping time, the electron density decays due 
to causes that are not fully understood.5 We exploit this 
density decay in our measurements to provide a density 
scan. A cylindrical non-neutral plasma column has a low- 
frequency m= 1 mode, generally referred to as the dio- 
cotron mode,13 whose frequency is given by 

ad= (4)/20, (1) 

where (a;) = (no)e2/eom, is the square of the plasma 
frequency, averaged over the plasma cross section, out to 
the surrounding conductor, and uc=eB/m, is the cyclo- 

(a) magnetic field 
4 

trap dipole octupde octupole dipole trap -- -- 

.l-1.0 MHz 140 MHz data aqulsition 
source source 

180” 

y a&--+4 L.&x, \&-&-4 
(W 03 w 03 

FIG. 1. Schematic of the experimental device. (a) Cylindrical electrode 
structure and instrumentation. (b)-(e) illustrate possible phasings of the 
dipole and octupole sections. 
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TABLE I. Pure electron plasma experimental parameters. 

Magnetic field -50 G 
Field uniformity =tO.O15% 
Electron density <5X106cm-3 
Electron temperature l-2 eV 
Cylinder radius 2.5 cm 
Trap length 40 cm 
Trap duration 200 msec (typical) 
Repetition rate 5 Hz (typical) 
Cyclotron frequency - 140 MHz 
Plasma frequency < 20 MHz 
Rotation frequency <2 MHz 
Axial bounce frequency l-2 MHz 
Diocotron frequency <l MHz 
Larmor radius -1 mm 
Debye length >7mm 

tron frequency. Here tid is proportional to the electron line 
density. We also note that, in general, the rotational angu- 
lar velocity oo( r) =&( r)/rB of a non-neutral plasma var- 
ies with radius in a way which depends upon the density 
profile through the relationshipI ( l/r)d[?oo( r)]/dr 
= c$(r)/w,. It is convenient for our later discussions to 
introduce normalized angular velocity and density profiles, 
f(r) and g(r), as follows: c$( r) = wi(O)f( r) and 
wo( r) =oe(O)g( r). When the density profile decreases 
monotonically with radius, so does the angular velocity 
profile, as illustrated by the example of Fig. 2. Near the 
axis we assume that f(r) has the form 1 - ( r/a)2, where a 
is the scale length of the density profile. This gives an 
angular velocity profile g(r) = l-O.5 ( r/a)2. In the discus- 
sion of our results we use the monotonic feature of the 
angular velocity profile. 

The cylindrical electrode structure is segmented azi- 
muthally and axially, with coaxial feeds to each segment so 
as to be able to apply rf electric fields to the plasma of a 
known spatial variation. As shown in Fig. 1 (a), there are 
two octupole sections, two dipole sections, and two cylin- 
drical trap electrodes symmetrically disposed about the 
midplane. By applying rf potentials of differing phases to 
different sections of the octupoles it is possible to empha- 
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FIG. 2. Normalized radial density profile, f(r), and corresponding nor- 
malized angular velocity profile, g(r) . 

FIG. 3. Decay of the mean plasma density versus time. fd= (fi)/Zf, is 
plotted. 

size different circular harmonics (m = 1,2,3... for eime). For 
example, driving one electrode only excites all harmonics 
up to m  = 7 with diminishing amplitude. The configuration 
of Fig. 1 (c) excites m= 1,3,5,... and that of Fig. 1 (d) ex- 
cites m=2,6,... . Configuration 1 (e) creates mainly an m  
= 1 rotating electric field. Only m  > 0 circular harmonics 
give right circularly polarized electric fields which can 
drive electron cyclotron resonance. 

In this experiment, one octupole section is driven from 
a source of about 140 MHz and the second octupole sec- 
tion is connected to a 140 MHz receiver and data acquisi- 
tion system so as to form a transmission system. Transmis- 
sion peaks occur when the conditions (density and 
magnetic field) in the plasma are such that a normal mode 
of the plasma exists at the source frequency. During the 
trap period the density decays as shown in Fig. 3. On 
successive trap cycles we increment the magnetic field by a 
small amount. A complete scan requires 100-200 cycles. In 
this way we are able to make a two-dimensional scan in 
density and magnetic field. Figure 4 shows such a scan in 
which various resonances of the column are evident. 
Through the use of various phasings of the octupole sec- 
tions described previously, we are able to identify the m  
numbers of the modes shown in Fig. 4. All of the modes 
shown correspond to k,=O. As may be seen from this 
figure, there is only one m  = 1 mode and it occurs for 
f < fc For each m  greater than 1, there are sets of modes 
occurring for f > fc Each of the various modes tends to- 
ward the cyclotron frequency as the density decays, sug- 
gesting that the dl@rences from f, are proportional to 
density. Later, we will see that this is the case. 

Ill. THE DIPOLE MODE, m=l 

From Fig. 4 we see a single dipole mode whose sepa- 
ration from the cyclotron frequency decreases with de- 
creasing density. To quantify this relationship we have 
measured, nearly simultaneously, the frequency of the m  
= 1 cyclotron mode and the frequency of the m  = 1 dio- 
cotron mode, the latter giving the mean density. To mea- 
sure the cyclotron mode frequency at a particular time in 
the plasma decay, we apply a short burst, typically 200 
psec, of rf to one octupole section and adjust its frequency 
so as to maximize the rf amplitude received by the second 
octupole section at the end of the burst. We also measure 
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FIG. 4. Transmission between octupole sections showing normal modes 
of the plasma. The magnetic field is decremented on successive traces. For 
clarity every third trace is displayed. The m =4 resonances are too small 
to be seen in this display. 

the diocotron mode frequency immediately following this 
burst by applying a similar low-frequency burst to a dipole 
section and adjusting its frequency so as to maximize the 
amplitude of the signal received on the second dipole sec- 
tion at the end of the burst. The timing of these bursts is 
illustrated in Fig. 5(a). Since the plasma is produced re- 
petitively at about 5 Hz, these measurements are relatively 
straightforward. There is an uncertainty in the measured 
frequencies of at least 1 kHz because of the limited burst 
duration and some additional error results from shot-to- 
shot variation in plasma production. 

Figure 5 (b) shows a cross-plot of the frequency of the 
m = 1 cyclotron mode versus the frequency of the m= 1 
diocotron mode obtained by making these measurements 
at various times in the plasma decay. From this plot, we 
conclude that the downshift of the m= I cyclotroti mode 
from the cyclotron frequency is equal to the m = I diocotron 
frequency, to within experimental error. 

One can understand this result from a simple model 
which ignores the internal degrees of freedom of the col- 
umn, i.e., by treating the column, whatever its density pro- 
file, as undergoing a small rigid displacement. While the 
neglect of the internal degrees of freedom is an oversimpli- 
fication, an analysis of a rotating fluid which includes all 
the internal degrees of freedom gives the same result.14 
Figure 6 shows the column displaced by a small amount S, 
from the axis of the surrounding conducting cylinder. This 
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FIG. 5. Measurement of the m= 1 cyclotron mode and diocotron mode 
frequencies. (a) The timing of the measurements. (b) Cross-plot of the 
two frequencies. 
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causes a redistribution of charges on the conductor, which 
in turn produces a uniform electric field E, inside the cyl- 
inder whose value is given in Fig. 6. At low frequencies, the 
inertial terms can be neglected and this field results in a 
EX B drift of the charge distribution around the axis at the 
diocotron frequency od. At high frequencies the most im- 
portant force is the vXB force, with the induced electric 
field causing a small correction. Since the electric force is 
antiparallel to the VX B force it gives rise to a slightly 
reduced frequency of circular motion, or downshift. These 
effects are evident in the equations of motion of the rigid 
cylinder of charge: 

I+ Ql 6 
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FIG. 6. Sketch showing electric field generated by a small rigid displace- 
ment of the plasma by S, from the axis. 
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FIG. 7. Normalized frequency shifts, (f-f,)/~-~, versus density, fd 
= (fs,)/2f, from the experimental data of Fig. 4. The rightmost and 
leftmost points correspond to the beginning and end of the trap cycle, 
respectively. 

;S;,+os,=f(o$,)S,, (24 
8y-6J&~(a$,6y (2b) 

The right-hand side expresses the effect of the electric field 
of the wall charges. Equations (2a) and (2b) have both a 
low-frequency solution, which describes the m= 1 dio- 
cotron mode, and a high-frequency solution, which de- 
scribes the downshifted m  = 1 cyclotron mode. It is readily 
shown that the sum of these two frequencies is o, in ac- 
cord with our measurements. Since the magnitude of the 
induced electric field is the same for both modes, it is not 
surprising that the downshift of the m= 1 cyclotron mode 
turns out to be equal to the diocotron frequency od. 

Having shown that the downshift of the frequency of 
m  = 1 cyclotron motion is the same as the m  = 1 diocotron 
frequency, we use the former rather than the latter to de- 
termine the mean density. A least-square two-exponential 
fit to the downshift was actually used to obtain the density 
decay shown in Fig. 3. Using the mean density, or more 
precisely the diocotron frequency od, we normalize the 
frequency shifts of the various modes shown in Fig. 4 to 
(0;)/2w, These normalized shifts are plotted in Fig. 7 
versus mean density. As would be expected from this nor- 
malization the m  = 1 shift is at - 1. 

IV. QUADRUPOLE MODES AND HIGHER, 11722 

From Fig. 7 we see that the normalized shifts of the 
m=2,3,4 modes fall into bands of approximately equally 
spaced resonances lying just below the values 2, 4, and 6, 
respectively. At early times, or high density, the shifts are 
slightly larger. In all scans taken, the normalized shifts fall 
into these bands, but the early time behavior and values of 
the normalized shifts may vary slightly from scan to scan. 

We explain these bands as radially trapped, azimuth- 
ally propagating, Bernstein waves. Bernstein waves arise 
out of finite Larmor radius effects due to the nonzero elec- 

tron temperature.‘5 The fact that they are radially trapped 
follows from the radial angular velocity profile and the 
Doppler shift which it produces. We now present an ap- 
proximate theory of radially trapped modes in a rotating 
pure electron plasma which is an adaptation of the Bern- 
stein theory for plane waves in a neutral plasma. We start 
from the approximate plane wave dispersion relation for a 
spatially uniform plasma at rest when the frequency is 
close to the cyclotron frequency,* 

02&+w$( 1 -/P&2). (3) 

It has also been assumed that 0; 4 of and k2p2& 1, where k 
is the wave number and p* is the mean square Larmor 
radius. To adapt this dispersion relation to a rotating non- 
neutral plasma two important changes are required. First, 
w should be understood as, and therefore replaced by, the 
Doppler shifted frequency (w-moo) seen by the rotating 
plasma (w being the frequency in the laboratory). Second, 
w, should be understood as the single particle gyration 
frequency which, in a rotating non-neutral plasma, is 
slightly different from eB/m due to centrifugal and Corio- 
lis effects. 14,16 To effect this correction we make the substi- 
tution, of -* (w, - 2wO) (w, - 2w0 - r dwO/dr). Thus Eq. 
( 3 ) becomes 

(w-mad*- (co,--22wo) 
r dwO 

0+---2f~~-~ 

Furthermore, we wish to apply this to a situation in which 
w. and 0; are, in general, functions of radius and we will 
describe the r dependence through the dimensionless pro- 
file functions g(r) and f(r) introduced earlier. Since the 
frequency w is given, we think of Eq. (4) as one which 
determines the local wave number of Bernstein waves in a 
plasma whose properties vary with radius slowly on the 
scale of a wavelength, i.e., ka<l. In making this last ap- 
proximation we are neglecting mode coupling and thus the 
coupling of the internal Bernstein modes to the external 
fields.17 However, little error is made in the frequencies of 
the modes. In Eq. (4), the two leading terms in 02 cancel, 
and to first order in wo/wo which is small, the remaining 
terms can be rearranged to give, 

k*=2[ (m- l)g(r) -/z]/p*f(r), (5) 

where it = (o-w,) /w. (0) is a frequency shift, normalized 
to the central rotation frequency, which is proportional to 
the central density. From Eq. (5) and the fact that g(r) 
decreases monotonically with radius from unity on the 
axis, we see that k* can pass through zero and change sign 
at a critical radius. Thus there are propagating waves in- 
side the critical radius and evanescent waves outside the 
critical radius. This situation will occur when 
(m-l)>A>(m-l)g,i,sinceg,,,=l. To obtain the al- 
lowed values the normalized resonant frequencies /2, we 
convert Eq. (5) to a differential equation in cylindrical 
coordinates, ( l/r)d( rR)/dr- m*R/? + k*R =0, and solve 
it numerically; R(r) is proportional to the perturbed 
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FIG. 8. Radial wave functions for m= 2, p/u=O.O2, with their normal- 
ized frequencies. The first five modes are shown. 

density.17 We use the profile functions described in Fig. 2 
and note that the resulting eigenvalues will be insensitive to 
the details of the profile functions beyond the critical ra- 
dius and therefore at the conducting wall. Near the origin, 
R - 8” and beyond the turning point R -+ 0. Examples of 
the first few solutions for p/a=O.O2 are shown in Fig. 8, 
with the corresponding normalized frequency shifts, il. As 
the radial mode number I increases, the critical radius in- 
creases so as to accommodate more nodes in the eigenfunc- 
tion, and the frequency shift decreases. The d@rences in 
normalized frequency are nearly constant. These differ- 
ences decrease with decreasing p/a as shown in Fig. 9. In 
the limit p/a + 0 the modes become dense. By comparing 
the experimentally measured mode spacings with the re- 
sults shown in Fig. 9 a value of p/a for the experiment can 
be inferred. 

When the modes are trapped close to the axis, f(r) =: 1 
and the differential equation has the same form as the two- 
dimensional harmonic oscillator equation. The eigenvalues 
of the simplified equation can be shown to be 

A,,=m-l- $Gi(2l+m-l)(p/a), (6) 

where I= 1 2 3 , f ,..* is the radial mode number. For the low- 
est I values Eq. (6) is in good agreement with the numer- 
ical results of Fig. 9. 

By comparing the experimentally observed values of 
the frequency shifts with the predictions of Eq. (6) or of 
Fig. 9, we can infer certain properties of the plasma. Since 
p/a is small, Eq. (6) gives a series of closely spaced modes 
whose normalized shifts lie just below m - 1, where m is 
the azimuthal mode number. By comparing the experimen- 
tally observed mode spacings for a given m with the pre- 
dictions of Eq. (6)) p/a can be determined and from the 
data of Fig. 4 it is found to be about 0.04. Since the theo- 
retical shifts of Eq. 6 have been normalized to the central 
rotation frequency, wi(O)/2w,, the upshifts of the various 
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FIG. 9. Theoretical spacing of trapped m=2 Bernstein modes versus 
Larmor radius, p/a, normalized to the central rotation frequency 
fi(O)/Zf, for the profiles of Fig. 2. 

series limits from the cyclotron frequency also give a good 
approximation to the central rotation frequency. Now the 
experimental data was normalized to the (G$( r) )/20, and 
the series limits of the experimental shifts fell at about 2, 4, 
6, for m =2,3,4, respectively. Comparing this with the the- 
oretical limits of 1,2,3, respectively, we infer that the ratio 
of central density to mean density of the plasma is about 2. 
While this is not sufficient to determine the density profile 
completely, it is consistent with our assumed profile if the 
parameter a is taken to be the radius of the conducting 
wall. If this were the case, our previously inferred value of 
p/a gives an electron temperature of about 2 eV. 

V. SUMMARY 

In this experiment we have shown that there is a rich 
structure of modes in a rotating non-neutral plasma col- 
umn close to the cyclotron frequency in a low-density 
plasma. We have also shown that frequencies of these 
modes are shifted away from the cyclotron frequency by 
amounts that are proportional to density. The m= 1, k,-0 
mode is found to be downshifted from the cyclotron fre- 
quency by an amount equal to the diocotron frequency, 
and we have given a simplified explanation of this result, a 
result which is also born out by the fluid theory. For each 
m greater than 1 we find a series of eight to ten closely 
spaced modes of diminishing amplitude, upshifted from the 
cyclotron frequency by amounts roughly proportional to 
m - 1. We interpret these modes as radially trapped, azi- 
muthally propagating, thermal Bernstein modes which 
arise out of finite Larmor radius effects. The origin of the 
upshift of their frequency is Doppler shift due to rotation. 
Radial trapping results because the angular velocity profile 
decreases with radius from the axis. By comparing the ex- 
perimental results with a simplified theory, we can infer the 
ratio of electron Larmor radius to plasma scale length and 
we can determine the rotational angular velocity on axis. 
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VI. DISCUSSION 

The radially trapped Bernstein modes in a non-neutral 
plasma column are similar in some respects to the m = 0 
Buchsbaum-Hasegawa modes’* in a neutral plasma col- 
umn with a radial density profile. However, there are a 
number of important differences, the most important of 
which arise from plasma rotation. First, the origin of the 
trapping can be traced to the angular velocity profile, 
rather than the density profile although the two are related. 
Also there is a frequency upshift due to azimuthally prop- 
agating modes in a rotating plasma. This gives the Doppler 
shift proportional to m and to the angular velocity. Finally, 
the modes are observed near the cyclotron frequency, 
rather than near the second harmonic of the cyclotron 
frequency. 

The modes we observe appear to have k,=O. Driving 
one segment of one octupole section 180” out of phase with 
the same segment of the other octupole section should ex- 
cite modes which are antisymmetric about the midplane. 
The lowest of these has k,z=?r/L, where L is the length of 
the column. This mode, if excited, could be received with a 
similar arrangement with a different pair of segments. We 
do not see this mode, and we believe that this is because of 
cyclotron damping. The parameter, (w - co,)/kgthr which 
governs cyclotron damping’ would be of order unity so 
damping of this mode should be large. 

Bernstein modes for m = 1 are conspicuous by their 
absence. We note that m = 1 is a special case, and Eq. (5) 
simplifies to k* = - 2L/p*f( r); k2 is positive, and therefore 
waves propagate, for all radii so long as 1 is negative. 
There is no longer a critical radius at which waves are 
reflected. However, k2 becomes very large at the plasma 
edge where the density becomes very small and the waves 
are likely to be absorbed there rather than reflected. 

Finally, we point out that the rigid-rotor equilibria, 
often used in theoretical studies,9*2*‘8’19 has an angular ve- 
locity that is independent of radius and therefore does not 
give rise to radially trapped Bernstein modes. Further- 
more, the question of what happens to the Bernstein waves 
at the plasma edge of a rigid-rotor equilibrium, where the 

density falls smoothly to zero in a short distance (as dis- 
cussed in the preceding paragraph for m = I), has not re- 
ceived attention in the kinetic treatment of waves in non- 
neutral plasmas.9’2 This question also arises in slab 
equilibria.16 
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