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Resonances near the cyclotron frequency of a cylindrical non-neutral plasma column with radial 
density and angular velocity profiles are studied. Cold plasma and warm plasma models are used to 
consider the various multipole modes (e im’) for k, =O. For PP = 1 only a single resonance, a center 
of mass mode, is found. Its frequency is downshifted from the cyclotron frequency by an amount 
equal to the frequency of the low-frequency diocotron mode. For each m greater than 1 the cold 
plasma model gives a continuous absorption band with spatially localized absorption at each 
frequency, corresponding to a continuum of singular modes. In the warm plasma model, the 
continuuo go over to sets of discrete radially trapped azimuthally propagating Bernstein modes. For 
both cases, the plasma rotation Doppler-shifts the azimuthalIy propagating modes up in frequency. 
The angular velocity profile, together with plasma temperature, determine the spacing of the 
Bernstein modes within a band. 0 1995 American fnstirute elf Physics. 

1. lNTRODUCTlON 

In this paper the modes of a cylindrical non-neutral 
plasma column in the vicinity of the cyclotron frequency 
wc = eBlm, are studied theoretically. This work was done in 
support of recent experiments.’ Plasma rotation plays a vital 
role in determining the mode structure near the cyclotron 
frequency of non-neutral plasmas and is responsible for 
marked differences from otherwise similar phenomena in 
neutral plasmas. Non-neutral plasmas have been studied ex- 
tensively in recent years and there are two good summaries 
of this work.2,3 However there has been little attention to 
high frequency phenomena. A notable exception is the early 
theoretical work of Krall and Davidson3” in which they 
show how to carry over certain Vlasov results from cylindri- 
cal neutral plasmas to cylindrical non-neutral plasmas. How- 
ever, their results are limited to the rigid rotor equilibrium 
state, a situation not always obtained in laboratory plasmas 
because of the time required to reach this state can exceed 
the plasma lifetime. Recently Dubin’ has given a theory of 
the modes of cold rigid rotor spheroidal non-neutral plasma, 
which includes high frequency modes. Pearson6 gave a finite 
Larmor radius treatment of the Bernstein7 waves of a slab 
and cylindrical neutral plasmas with a spatially varying den- 
sity profile but rotation was not included in the cylindrical 
case. More recently Prasad, Morales, and Fried’ have have 
given a small Larmor radius theory of modes of a ylon- 
neutral slab plasma which has sheared flow. However, be- 
cause of the slab geometry, their results cannot be compared 
directly with experiments. 

In this paper, we are particularly interested in the modes 
of a nonequilibrium plasma in which both plasma density 
and angular velocity are functions of radius. While these 
profiles are expected to evolve toward thermal equilibrium, 
this evolution takes place on a sufficiently long time scale 
that the profiles may be considered to be in a steady state for 
the purposes of describing the phenomena discussed here. 
For simplicity only the k,=O modes of a long column with 
the various cylindrical harmonics, mf0, are treated. The 
cold plasma case, which leads to a continuous spectrum of 

modes for each m, is discussed first. Then an approximate 
treatment of the warm plasma modes (first order in tempera- 
ture) is given. This leads to azimuthally propagating and ra- 
dially trapped Bernstein modes, reminiscent of the 
Buchsbaum-Hasegawa modes9 which occur near 20, in a 
neutral plasma which has a radial density profile but no 
rotation, ‘O 

It is instructive as a preliminary to recall the behavior of 
a cold cylindrical neutral plasma whose density depends 
upon radius but which is not rotating. When an oscillating 
electric field is applied externally, the plasma exhibits a spa- 
tially localized resonant response at the radius where 
KA (r) = 1 - e$( r)l( w2 - w:), the perpendicular dielectric 
function, vanishes. Because of the radial dependence of den- 
sity, there is a range of frequencies for which this condition 
can be satisfied, corresponding to the range of upper hybrid 
frequencies within the plasma. This leads to a continuum of 
singular eigenmodes, similar to those found in other 
problems,’ ‘*I2 and an upper-hybrid continuum absorption 
band. 

A non-neutral plasma column is necessarily in rotation 
in order to be in a steady state. This rotation gives rise to a 
Doppler shift of an applied frequency, and the upper hybrid 
resonance, as seen in the laboratory frame is upshifted. As 
will be seen later, the centrifugal and Coriolis forces associ- 
ated with the rotation also give rise to a downshift of the 
single particle gyration frequency. For rigid rotor equilibria 
the downshifted frequency is called the vortex frequency.3 
For nonrigid rotor steady states, the single particle downshift 
and the Doppler upshift both depend upon radius and this 
complicates the situation considerably. 

In the remainder of the paper the response of the plasma 
to applied multipolar fields produced by the geometry of Fig. 
I is studied. In Sets. II-VI the cold plasma behavior of 
electrons and the absorption band which arises out of the 
continuum of singular normal modes is discussed. In Sec. 
VII it is shown, approximately, how the continuum goes over 
to a set of radially trapped azimuthally propagating Bernstein 
modes in a warm plasma, where finite Larmor radius effects 
are important. In Sec. VIII the results are extended to mul- 
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FIG. 1. Schematic diagram of the plasma, surrounding electrodes, and driv- 
ing circuitry (end view), with definition of Y(W), the plasma admittance 
function with w=oC+oO(0)X. 

tiple ion species. Throughout the paper it is assumed that 
u$/w~ is a small parameter, and results are obtained only to 
first order in this parameter. It is also assumed that the di- 
mensions are small compared with a free space wavelength 
so that retardation effects can be neglected. 

II. COLD PLASMA EQUATIONS 

We consider a cylindrical non-neutral plasma which is 
contained by a static axial magnetic field B,, and which has a 
radial density profile no(r) which is assumed to be known. 
The density profile, ne( Y), need not be an equilibrium profile 
in the thermodynamic sense, since a variety of nonequilib- 
rium profiles can be produced which evolve on a time scale 
very long compared to the time scale of cyclotron resonance 
observation times. Associated with a given density profile, 
tza(r), is a radial electric field profile, Eo(r), and an angular 
velocity profile, C&Y), which is described.in Sec. III. _ 

The cold fluid equations of motion and continuity in Eu- 
ler&i form for cylindrical geometry and ‘no z variation are 

(1) 

;+(;) q+(f) f!$Lo, (3) 

Maxwell equations for the quasistatic electric field are 

(4) 

(5) 

Ill. THE STEADY STATE 

In the steady state, Ee and U, vanish and the remaining 
quantities, E, , ug, and n are independent of Q and t. The 
steady-state quantities obey the equations 

d(rEo,) --.-rnoe -=-- 
dr 6): 

(6) 

(7) 

where wo(~)=~oB(~)l~ is the angular velocity at radius Y. 
The subscripts 0 refer to the steady-state values. In the low 
density limit, (0;/0:)41, the rotational angular velocity, 
mo, is everywhere small compared with ‘the cyclotron fre- 
quency and the centrifugal force term r& of Eq. (6) may be 
neglected. This corresponds to being well below the Bril- 
louin density limit. Equations (6) and (7) then lead to the 
usual low-density relationship between angular velocity and 
density: 

1 4~2~o(~)l w;W 0 - 
r dr =- co, * (8) 

It is ,convenient to normalize the radial-dependent plasma 
frequency and rotational angular velocity to their central val- 
ues and introduce the functions f(r) and g(r) to express the 
normalized density and angular velocity functions:Let 

~~(T)=~~(O)f(r), (9) 

@o(r)=~~ot0k(r)? 00) 

where, by definition, f(0) = g(0) = 1. It follows from Eq. (8) 
that the central rotation frequency is wo(0)=o~(O)/20,. 
With these definitions Bql (8) takes the f&m 

(8’) 

A simple illustration of a monotonically ‘decreasing .density 
profile is the parabolic density profile f(r>‘= 1 -(r/a)“, for 
rb. This profile, together with the corresponding angular 
velocity profile, g(r) = l-0.5( r/a)’ will be. used in later 
discussions, although the general approach is not limited to 
this example; g(r) is obtained~ by integrating Eq. (8’) and 
both f(r) and g(r) are shown in Fig. 2. 

iv. SMALL PERTURBATIONS 

Tlie,linearized forms of Eqs. (l)-(3)‘for small perturba- 
tions (subscript I) when one assumes exp(im 8- itit) depen- 
dence are 

,. .L 
-i[O_m00]ulr+[W,-200]~~e~- (11) 

Ele, 

02) 

-i(o-mwojnl+ (13) 

which are readily~ solved for u i r and u t 0 in terms of E i r and 
Ele : 
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radius, r/a =x 

FIG. 2. Illustrative density and angular velocity profiles of a rotating non- 
neutral plasma, normalized to their central values. f(x) =nO(x)lno(0), 
g(x) = w&)/w,(O), x= r/u. 

e 
utr=- m, i 1 

x-[W- 
-i[w-mooJE,,-[w,-2wo]E,e 

mwo]2+[~,-2~~][w,-2wo-rdooldrJ’ 

(14) 
e 

tile=- m, ( 1 

[w,-2wo-rdwoldr]E,,-i[w-mwo]E,e 
x-[ - w mwo]2+[w,-2wo][w,-200-rdwoldr] 

(15) 
Now w’ = w - m wo( r) is the local Doppler shifted frequency 
seen by a fluid element drifting around the axis at radius Y. 
The other term in the denominator of Eqs. (14) and (15) can 
be identified as the square of the effective single particle 
gyration frequency 

+[ (w,-2wo~(w,-2wo- y]? (16) 

This frequency is downshifted slightly from o, = eBolme by 
the centrifugal and Coriolis forces and, in general, the down- 
shift is also dependent upon radius. However, in the special 
case when the plasma density is independent of radius, wa is 
also independent of radius and one recovers the rigid rotor 
vortex frequency, 6.~: = W, - 2wo, which is also indepen- 
dent of radius. 

Since we are primarily interested in frequencies close to 
the cyclotron frequency Eqs. (14) and (15) can be simplified. 
It is useful to introduce the normalized frequency X through 
the definition 

o=w,.+[w;(0)/2w,]h, (17) 
where A is the frequency difference W- wc , normalized to the 
central rotation frequency. Then to first order in oi(O)/w:, 
Eqs. (14) and (15) can be written 

nOeulr= --iP?.gf?u~~= 
-io,Eaf(r)[E,,-iEie] 

[X-mg-t-2gS0.5 rdgldr]’ 
(18) 

or, more simply, as noeu+ =0 and 
- 2iw,eQf( r)E- 

noeu-= [A-mg+g+f] ’ (19) 

where the definitions E,=ElrtiE18 and U%=UtrfiUte 
have been introduced, and dgldr from Eq. (8’) has been 
used. E, and u% denote amplitudes of the two circularly 
polarized components of the electric field and the velocity. 
From this result it is seen that close to cyclotron resonance 
only one circularly polarized component is effective in excit- 
ing the motion, namely that which matches the gyration 
sense of the particles. The velocity which it produces is cir- 
cularly polarized with the same sense. Linear combinations 
of the two Maxwell equations, Eqs. (4) and (5) give 

(;j C$L(~)E~=~, (20) 

and the continuity equation, Eq. (13), together with Eq. (18) 
gives 

1 d rfE - m 
-nlelEo=- - fE- 

r dr [A-mg+g+f]-u[X-mg+g+f]’ 
(2l) 

where u- rntio=w, has been used. Defining a dielectric 
function for right circularly polarized fields as K(r) = I -f/ 
[h - mg + g +f], the quantity D _ = ICE- obeys a particu- 
larly simple equation: 

1 d 
; -& (Q-1 -;D-=O; 

D- is the displacement associated with the resonantly polar- 
ized component. 

V. COLD PLASMA SOLUTIONS 

The solution of Eq. (22) is simply D-(r)=AP- ‘, 
where A is an arbitrary constant, and the corresponding elec- 
tric field is 

E-(r)=AP-‘/K(r). (23) 
For ms0, A must be zero in order for the field to be zero at 
r=O. Thus E- is zero for mG0. Only applied fields with 
positive m have the correct circular polarization to elicit a 
response from a pure electron plasma. Thus only positive m 
need be considered. For m = + 1, D- =A is independent of 
radius. This corresponds to a center of mass mode. 

Having obtained the solution for E-, it is substituted 
into Eq. (2 1) to obtain the perturbed density, and the latter is 
then substituted into Eq. (20) to obtain the equation for E, : 

I d 
--;(rE+)+$E+=--;i; 1 d [rAr”-‘[ I--k]] 

- !l+m-I [ 1 1-g (24) 

The right side of Eq. (24) gives the perturbed density in the 
plasma and this expression can be used to obtain the radial 
dependence of the perturbed density for various applied fre- 
quencies. The perturbed density exhibits a singularity at the 
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radius where K(r) vanishes. This condition corresponds to a 
localized upper hybrid resonance condition, when the vari- 
ous frequency shifts incorporated into K(r) are taken into 
account. To solve for E+ , the substitution E+ = #(r)l~-(~+‘) 
leads to an integrable equation for I,$ whose solution is 

+4j”or $ [&- l]r”mdr’. cm 

The ratio of E, to E- at a given radius is then given by 

R,,,ir) = 
(26) 

g$=$$ &g-l]r~~~dr~. 

At a radius r,, beyond which the plasma density vanishes, 
the integral is just a constant, K= 1 and EJE- falls of as 
r -2n1 . Equation (26) can be integrated by parts to give 

R~(~)=- $ I;[ &- ~]r-~dr’, (27) 

for r>r,,. Using the definition of K(r’) this can also be 
written 

2m 
R,,,(r) = - -p 

f(r’) 
A-(m- l)g(r’) I r 

f2,?L-ldrl. 

(274 
Here, R,,, is a measure of the mtb multipole moment induced 
in the plasma column by the applied field. For the illustrative 
profile of Fig. 2, r,,=a. 

VI. ADMllTANCE FUNCTION 

The expression of R,(r) is now related to the measure- 
ment geometry depicted in Fig. 1. If a voltage Veeiot is 
applied to the segmented cylinder shown, the current Ieeio’ 
flowing to the electrode (as displacement current) will be 

I 80 
I=--iOE() El,b de. 

- e, (28) 

It is then straightforward to show that the observed admit- 
tance Y= I/V is related to the R,(b) defined above as fol- 
lows: 

Y(X)=-io,eObx C, &nib) f 1 
m R,(b) - 1’ (29) 

where the C,= (4mlrr)[sin(m Ou)lm]” are geometrical 
weighting factors for the various multipole contributions 
which depend only upon m and the angle 0s; C, falls off 
like l/m and for &=r/2 only the odd C, are nonzero. The 
fraction (R,,+ l)l(R,- 1) is just proportional to the mth 
multipole component of E1,JEI B at the electrode, and from 
E!q. (29) it is evident that we should examine the behavior of 
that factor for various m. Because of the factor (r’lb)‘” in 
Eq. (26) the higher multipole contributions fall off as 
(a/b)““, where we have set rmax= a. Thus the dipole contri- 
bution (m = 1) will dominate. Subtracting the vacuum contri- 
bution to the admittance, i.e., that part which exists in the 
absence of the plasma, the appropriate factor in Eq. (29) 
becomes 2R,l(R,- 1). 

A. Plasma density independent of radius 

For plasma of uniform density up to radius a, f= g = 1 
for r< a and Eq. (27a) is particularly easy to evaluate and 
gives 

so that 

R,(b) + 1 X-m+l-(alb)2m 
R,(b) - 1 =- X-m+ 1 +(alb)2m* iw 

Equation (31) has a simple pole at 

h=m- 1 -(alb)2m=m-2+ l-(alb)2m, (32) 

with a residue -2(alb)“m. Thus there is a single discrete 
mode for each m, with the coupling decreasing with m, in 
accord with earlier work.3 Each term in the second form of 
Eq. (32) can be identified with a frequency shift of a particu- 
lar origin. The first is a Doppler shift due to plasma rotation. 
The second is a downshift of the single particle gyration 
frequency. The third is a plasma upshift giving rise to the 
upper hybrid frequency. The last is a downshift caused by the 
image charges in the conducting walls. For (bla)2”~l the 
influence of the walls is negligible and this shift may be 
neglected. In a neutral plasma, the first two shifts are absent. 
Note that the m= 1 resonance lies below the free particle 
cyclotron frequency and m==2 and higher resonances lie 
above. 

B. Plasma density dependent upon radius, m=l 

When the equilibrium density, and therefore the rota; 
tional angular velocity, described by f(r) and g(r), respec- 
tively, depends on radius the situation is more complicated, 
except for m = 1. For m = 1, the radial dependence in the 
denominator of Eq. (27a) disappears and R,(b) is readily 
found to be 

RI(b)=-$[A lif(r)2r dr]=-r, 

and 

RI-t1 X-(f) -=- 
R,-1 X+(f)’ 

iw 

(33a) 

where (f) is the average off over the entire cross section. 
Thus the m=l resonance occurs at X=-(f), i.e. it is down- 
shifted and the downshift depends solely on the density av- 
eraged over the cross section. This downshifi is exactly equal 
to the frequency of the low-$requency m=l diocotron mode. 
In both the m= 1 cyclotron mode and the m =1 diocotron 
mode are center of mass modes. The downshif of the cyclo- 
tron mode and the frequency of the diocotron mode both 
arise from image charges in the conducting wall, as evi- 
denced by the fact that as a/b tends to zero (wall far away) 
both vanish. Wall charges produce a downshift because the 
force which they cause on the charged particles is antiparal- 
lel to the vXB force, thus reducing slightly the frequency of 
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circular motion. The sum of the frequencies of the down- 
shifted cyclotron mode and low-frequency diocotron mode is 
equal to w, = e&Imp. 

C. Plasma density dependent upon radius, m>l 

The behavior of the m>l modes is not as simple as for 
m= 1 when the density depends upon radius. Then the de- 
nominator of Eq. (27a) will vanish at at some radius where 
X=(m - 1 )g( r). This is just the condition at which the di- 
electric function K vanishes and therefore E- becomes very 
large. This condition is satisfied only at a particular radius, 
which depends upon the frequency A, so there is a localized 
resonant layer, the upper-hybrid layer for a non-neutral 
plasma. Denoting the minimum and maximum normalized 
rotation frequencies where f 20, then an upper-hybrid reso- 
nant layer occurs in the frequency band 

(m- llg*in<h<(~fi- 1 lgm,* (34) 
One can look at this another way. In the frequency band 

just described, there exists a contiwum of singular normal 
modes, with singularity occurring at the radius rs where 
(m - 1 )g( rs) =A. Based on the previous analysis, a prescrip- 
tion for finding the field of a singular normal modes is as 
follows. For a particular m, pick a frequency A in the proper 
frequency band. Find E-(r) from Eq. (23) by interpreting 
1 lK( r) = P{ 1 lK( Y)} + pS(r - r,) where P{ } stands for the 
principal value and ,u is a constant to be determined. Substi- 
tute this result into Eq. (25) to find E+(r). Finally, determine 
the constant P by requiring that 
2iE,(b)=E+(b)-E-(b)=O, since r=b is a conducting 
boundary. Application of this procedure for A’s in the fre- 
quency band described by Eq. (24) presumably gives a com- 
plete orthogonal set of singular eigenfunctions. 

For the evaluation of the R,‘s which appear in the ad- 
mittance function Y, Eq. (29) can be regarded as resulting 
from the analysis of an initial value problem in which A has 
a positive imaginary part, thus resolving the question of how 
to handle the singularity at r=r, . Alternatively, we could 
have assumed the existence of a small collision frequency in 
the earlier analysis and this would have the effect of replac- 
ing A by A+ i V. For the purpose of evaluating and displaying 
the various multipole contributions to the admittance func- 
tion, Eq. (29), the latter approach is followed, taking the 
limit of very small V. For the parabolic profiles previously 
discussed, the expression for R,(b) can be integrated to give 

m-2 

c 
Ak 

k=O (m-k)(m-k- I)+-’ 

(35) 

where A=-2(A-m+ l)l(m- 1). When O<A<l, the loga- 
rithm is complex and this leads to a complex admittance 
function representing absorption associated with a resonant 
layer in the plasma. The frequency band in which this occurs 
is just that given by Eq. (34) with g,.=O.5 and g,,= 1. In 
particular for m =2, 

FIG. 3. Admittance versus frequency for the m = 1,2,3,4 modes and the 
profiles shown in Fig. 2. Plotted are the real and imaginary parts of the 
plasma contribution, 2R,(b)l[R,(b)- I]. The ratio of wall radius, b, to 
plasma radius, CJ is 1.25. Plots for m=3 and 4 have been expanded by 
factors of 5 and 18 with respect to m =2 for clarity in presentation. 

(354 
In Fig. 3 the real and imaginary parts of 
2R,(b)l[R,n(b) - I], the main factor in the admittance Y, is 
displayed as a function of A. This clearly displays both the 
absorption band in which Y has a real part, and the existence 
of a localized upper hybrid resonance layer and the depen- 
dence of its position on A. 

VII. RESONANCES OF THE WARM PLASMA 

The previous discussion assumed zero temperature eiec- 
trons and this led to singular electric fields at the radius 
where K(r) vanishes. Under these conditions, finite Lannor 
radius effects (FLR) are important and lead to significant 
modifications of the behavior described above. Singular 
eigenmodes are no longer possible and Bernstein modes, 
propagating across the magnetic field, become possible, An 
approximate treatment of consequences of FLR effects is 
now developed by modifying the dielectric function K(r) 
obtained earlier to include FLR effects, to first order in the 
plasma temperature. When the disturbance takes the form of 
a plane wave with wave number k, the result of FLR effects 
is to reduce the effectiveness of the electric field in producing 
plasma currents by a factor 4Z1(k2p1/2) 
se -(k2p2’2t/(kp)2, where I, is the modified Bessel function 
and p’ is the mean square Larmor radius, averaged over a 
MaxweIlian distribution. To first order in (,4~)~, i.e., to first 
order in the temperature, this factor is approximately 
1 -0.5(kpj2. This approximation is useful so long as the Lar- 
mor radius is small compared with the wavelength. Since the 
particles average the electric field over the orbit, the dielec- 
tric function is no longer local. Neighboring regions of the 
plasma are coupled together and the continuum of singular 
normal modes is replaced by a discrete set of Bernstein 
modes. This result is now applied to a situation where the 
waves are not strictly plane waves because the plasma prop- 
erties vary slowly with position. This approximation is usefu1 
so long as the wavelength of the wave is small compared 
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with the distance over which the plasma properties vary. This 
leads to the following modification of the dielectric function: 

k”(r)= I~frl-~.5wP)zl 
A-mg+g+f ’ (36) 

where f and g have their previous meanings and are func- 
tions of radius. However, it should be pointed out that while 
temperature has been included to first order in the form of 
ELR effects in the wave dynamics, the effect of temperature 
in the form of the diamagnetic contribution to the angular 
velocity has not been included. This will modify slightly the 
relationship between f and g. As before, Eq. (36) is .valid 
only around the cyclotron frequency. This result is now ap- 
plied to the nonplane wave fields replacing k2 by -V2, the 
Laplace operator. This assumes that the density and angular 
velocity scale lengths are large compared to the wavelength 
of the waves. This leads to an approximate wave equation for 
the Bernstein modes which will determine the eigenmodes of 
the system, 

~$-R)-$?+k2(r)R=o, “(37) 

where 

k2(r) = 2[(m- I)&-)-A]+ 
P’fW ’ 

k(r) could be interpreted as the local wave number and it 
obviously depends upon radius through g(r) and f( r) . When 
k”(r)>0 the waves are propagating and when k2(r) CO the 
waves are evanescent, with k=O defining the turning point. 

To proceed further, an assumption about the density pro- 
file function f(r) must be made. According to Eq. (8’) this 
also determines the angular velocity profile function ‘g(r). 
For simplicity the parabolic density and angular velocity pro- 
files illustrated in Fig. 2 are used. This choice off(r) is very 
close to a diffusion profile,f(r) =J0(2.405rla) if a=b; the 
radius of the wall. For (m - 1 )g(r) >X the Bernstein waves 
are propagating and for (m- l)g(r)<X the waves are eva- 
nescent. For m>l and A a little less than (m - 1) the waves 
are trapped in the inner part of the plasma coltimn and eva-a 
nescent in the outer part of the column (like the 
Buchsbaum-Hasegawa modes’ near 20, and opposite from 
the Tonks-Dattner modes13 near wP, which are trapped in 
the outer region of the plasma. The lowest modes are trapped 
quite close to the center where f( r) = I. If this approximation 
is made in Eq. (38) then Eq. (37) becomes the two- 
dmlensional harmonic oscillator equation, whose eigenval- ~. 
ues are readily shown to be 

A ~m=im- l)- $Fi(2Z+m- 1) E, (39) 

where I is the radial mode number. 
Alternatively, Eq. (37) can be integrated numerically to 

obtain the eigenvalues. The appropriate boundary conditions 
are E--r’n-l near the origin and E-=0 at r=a [one solute 
tion of Eq. (37) can be shown to have such behavior at 
r=a]. One begins the integration at r =O and adjusts the 
eigenvalue X in successive integrations so as to assure the. 

radius, r 
I 
a 

FIG. 4. Radial wave functions for m=2, p/u=O.O2, with their normalized 
frequencies (from Ref. 1). The first live radial modes are shown. 

eigenfunction vanishes at r =a. The radial dependences of 
the first few m=2 modes obtained in this manner are shown 
in Fig. 4. One can see from Fig. 4 that the turning point for 
successively higher radial trapped Bernstein modes is closer 
to the plasma edge and would, for higher radial mode num- 
bers, approach the wall. Under these circumstances, the eva- 
nescent layer becomes thin and one can no longer argue that 
the conditions at the edge of the plasma are unimportant. 
Thus this approximate approach breaks down for very high 
radial mode numbers. The eigenvalues obtained are plotted 
in Fig. 5 for the range O<p/a<0.05. For very small values of 
this parameter (low temperature) the Bernstein mode spec- 
trum is very dense, approaching a continuous spectrum, as 
found earlier, when T-+0. For a given m>O, the eigenvalues 
all have X<m - 1, and for this profile h>(m - 1)/2. 

VIII. EXTENSIOy..TO MULTI-&E ION SPECIES 

Only a few changes are required to extend the previous 
results to two ‘or more ion species. This extension is moti- 
vated by the recent experiments of Sarid et aZ.14 Fist, the 
discussion is limited to two species for simplicity: Second, 
because the particles have positive charge, they gyrate in the 
opposite. direction, the plasma rotation is in the opposite di- 
rection, and fields which can drive cyclotron resonance have 
the opposite polarization. In the discussion below, we simply 
ignore these changes in sign and extend the previous analysis 
for. electrons of different mass, and make appropriate 
changes. Thus the quantities w, and wa below are positive. 
As before the density profiles ~of the two species are charac- 
terized by ._a_ 

n0l(r)=n0l(O)fi(r), f1(0)= 1, (404 

n02Cr)=n02tO)f2(rlt .f2(0)= I. Nob) 

The EXB angular velocity of each species is the same so a 
common angular velocity function g(r) is used, 
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p/a = Larmor radius/plasma radius 

FIG. 5. Theoretical spacing of the trapped m=2 Bernstein modes versus 
Larmor radius, p/a, normalized to the central rotation frequency &0)/Z f, 
for the profiles of Fig. 2 (from Ref. 1). 

00(r) = w0(OMr), g(O) = 1, (41) 

where 

~;#-v &(O) 4)(O)= -Tj-y+ --gy. (42) 
cl c2 

Let ~~=w~~/20~~/(w~~/20,~+0~,/2w,,) be the charge 
fraction of species 2 (with a similar definition 
Eq. (8’) becomes 

for et). Then 

1 d 
; ;I; [r2s(r)l=2[Elfl(r)+EZf2(r>3. (43) 

When fl(r) and f2(r) are specified g(r) is determined. For 
example, if f,(r)=l-~~,(r/a)~ and f2(r)=l-a2(r/./a/)2 
then 

aI E1 + a2c2 r 
0 

2 
g(r)=l- 2 a’ v-4 

Parabolic profiles serve as simple illustrative examples of 
diffusion-like nonrigid rotor profiles, and reduce to T=O 
rigid rotor profiles when the a’s are set to zero. 

We now examine cyclotron resonance when the fre- 
quency is near the cyclotron frequency of species 1. The 
dynamics of species 2 can be ignored, since it is far from 
resonance. However, its effect on oe( r) has been included in 
g(r). As before, a frequency shift, X1, normalized to the 
central rotation frequency, is introduced for the mode near 
W ”Oclt 

w=o,~+wo(O)X~. (45) 

The analysis leading up to Eq. (19) is unchanged, except that 
f(r) is replaced by elf,(r). The dielectric function for cir- 
cularly polarized fields becomes 

K(r)= l- 01(r) 
A,--(m- l)g(r)-0.5 rdg(r)ldr’ 

and when Eq. (43) is used to solve for l/K- 1 we obtain 

1 --..I= G-l 
K(r) Al-(m- l)gfE2f2’ (46) 

with a similar expression (with subscripts 1 and 2 inter- 
changed) when o==wC2. For the plasma extending to r=a 
and the wall at r= b we get 

R,(b) = - & ii s 
a % fl 
0 ~,-(m-l)g+%f2 

2mr2m-1 dr. 

(47) 
This gives the behavior when the frequency is in the vicinity 
of o,t and a similar expression (with the subscripts 1 and 2 
interchanged) gives the behavior when the frequency is in 
the vicinity of wC2. When e2=0 (no second species) and 
m=l, Eq. (33), our previous single species result, is recov- 
ered. As in the single species case, the two-species integrals 
such as Eq. (47) can be evaluated in the case of a parabolic 
density profile, and this evaluation leads to logarithmic func- 
tions as given in Eq. (35). 

A. Plasma density independent of radius 

For rigid rotor, or “top hat” profiles, 
fl(r)=fZ(r)=g(r)= 1 for &a so that 

R,(b) = - 

R,(b)= - 

The resonant modes are obtained by setting R,(b) equal to 
unity and this gives 

azm 
ht=(m-l)-E2-$5i;?;;;,, o=wct, W4 

a2m 
X2=(m- 1)-e,- F  e2+ w=o,2. (48b) 

Upon comparison with Eq. (32) it is seen that the terms 
involving E describe the changes in resonant frequencies aris- 
ing from the presence of a another species. For the center of 
mass modes (m = 1): 

a2 a2 
x,=-p- 1-p El, 

i i 
(494 

a2 a2 
h2=-p- 1-p E,, i I 

where the fact that E, f e2= 1 has been used. The second 
term, proportional to the density of the other species, repre- 
sents an additional downshift caused by the presence of the 
other species. 

B. Plasma density dependent upon radius 

We now consider density profile effects and, for simplic- 
ity, lim it our discussion to the parabolic profiles used earlier. 
From Eq. (47), and the similar expression with subscripts 1 
and 2 interchanged, we note that it is possible for the de- 
nominator of the integral to vanish at some radius in certain 
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frequency bands. In the cold plasma theory this signifies ab- 
sorption bands and in the warm plasma theory these are the 
bands in which the Bernstein modes may be found. To de- 
termine these frequency bands consider the vanishing of the 
denominator with the assumed profiles. Note that bands as- 
sociated with each of the species is expected. The denomi- 
nator for the species 1 resonance has the form 

Al-(m-I,11-;~)+82( 1-d-J 
where, for simplicity, it has been assumed that LY~=CZ~=CY, 
i.e., that both species have the same density profile. Vanish- 
ing of this denominator at r- =0 and r = a serves to determine 
the limits of the absorption bands. These limits are, for spe- 
cies 1, 

X1=(m- 1)-E2, (504 

X,=(m-1) 
i i 

1-f -Ez(l--(Y), GObI 

with similar expressions for the limits associated with the 
second species. For the center of mass modes (m= I), the 
frequencies of these two bands can be described as 

--E~=-&tI-$(l-Cr), (5 14, 

--E~~~~=G--E~(~-LY~, 61bj 
i.e., both bands lie beZow their respective cyclotron frequen- 
cies. From this result, it is seen that, unless the density is 
independent of radius (a=O, top-hat distributions), there are 
now absorption bands associated with the m=l cyclotron 
modes, whereas for the single species case, there was only a 
single discrete resonance. We speculate that the inclusion of 
temperature may lead to Bernstein modes in these bands. 

IX. SUMMARY AND CONCLUSIONS 

We have studied the kZ=O cyclotron modes of a cylin- 
drical non-neutral pIasma of low density (w~/w~<cl). Par- 
ticular attention has been given to a single species (electrons) 
which is in nonuniform rotation, i.e., where the density and 
angular velocity are functions of radius. The general features 
of the behavior near cyclotron resonance have been studied 
for a simple parabolic profile. The qualitative behavior for 
other monotonically decreasing profiles is similar but differs 
in details. We have obtained admittance function, Y(h), 
which characterizes the current flowing to a segment of the 
wall when an oscillating potential whose frequency is near 
the cyclotron frequency is applied to that segment. An ab- 
sorption band is found for each m value, for the range of 
frequencies for which a local upper-hybrid resonance occurs 
at some radius in the nonuniform plasma. These absorption 
bands correspond the the frequency bands in which the 
plasma has a continuum of singular eigenfunctions, although 
that approach is not pursued here. The plasma responds only 
to the circularly polarized component of the electric field 
which has the same sense as the gyrating charged particles 
and, because of plasma rotation, the each absorption band is 
upshifted by the Doppler effect. Found to be a special case is 
m = 1 with only a single discrete mode-and no continuum, a 

property which it shares with the low-frequency m = 1 dio- 
cotron mode. Both are center of mass modes. Presumably in 
both cases an m = 1 continuum of singular eigenmodes exists 
but they have no electric field exterior to the plasma, and 
therefore not observable, or excitable, with electrodes exte- 
rior to the plasma. The m = 1 cyclotron mode was shown to 
have a frequency which lies below the cyclotron frequency 
by and amount equal to the low-frequency diocotron mode 
frequency (0;5)/2 0,) where the average is taken over the 
cross section of the cylinder. 

When finite Larmor radius effects, owing to plasma tem- 
perature, are taken into account in an approximate fashion, 
Bernstein modes are found in the frequency bands for which 
the cold plasma theory predicts an absorption continuum as- 
sociated with the continuous spectrum of singular eigen- 
modes. Because of the radial density and angular velocity 
profiles the Bernstein modes are trapped in the central core 
of the plasma. They are traveling waves in the azimuthal 
direction and standing waves in the radial direction. The rela- 
tive frequency spacing between modes with different num- 
bers of radial nodes is proportional to the ratio of Larmor 
radius to gradient scale length, a small quantity. The Bem- 
stein mode spacing can be used to estimate the plasma tem- 
perature. Finally, an extension of the cold plasma results to 
plasmas with multiple ion species has been outlined. 

A more complete theory of the trapped Bernstein modes 
in a cylindrical nonuniform nonneutral plasma, such as a 
solution of the Vlasov equation to first order in the tempera- 
ture, is desirable. This approach has been used in Ref. 6 for 
a neutral plasma and in Ref. 8 for a planar non-neutral 
plasma. In order to carry out such an analysis one would also 
have to find a suitable steady state with radial profiles of the 
density and angular velocity which includes the diamagnetic 
drifts as well as the EXB drifts. 
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