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In this paper the focus is on the dynamics of two-dimensional cylindrical non-neutral plasmas. After 
reviewing some highlights of the non-neutral plasma dynamics, some recent two-dimensional 
results are described: vortex dynamics, diocotron instabilities of hollow profiles, collisionless 
damping of modes and fluid trapping by modes, fluid echoes, the cyclotron center of mass modes 
and warm plasma Bernstein modes, and temperature determination from fluctuation measurements. 
Attention is called to some unsolved problems. Q 1995 American Institute of Physics. 

I. INTRQDUCTION 

A brief chronology of developments in non-neutral plas- 
mas is shown in Table I. Work on non-neutral plasmas goes 
back at least to the pioneering paper by Brillouin,’ in which 
he first described steady-state flows of charged particle 
beams in a magnetic field, a form of magnetic focusing in 
which the repulsive space charge electric field E generated 
by charged particles is balanced by a Lorentz u X B force of 
the particles ~moving through a static magnetic field. He de- 
scribed both planar and cylindrical steady-state flows, illus- 
trated in Fig. 1 for the case of electrons. Both were later used 
for magnetic focusing of electron beams in various types of 
microwave devices. One of the earliest attempts to under- 
stand the dynamics of such beams was by McFarlane and 
Hay.” In attempting to explain the operation, the highly suc- 
cessful magnetron device, they studied the behavior of small 
perturbations in a planar Brillouin beam and showed that 
they could be unstable. Because of the sheared nature of the 
flow, the instability was termed the slipping stream instabil- 
ity and also the diocotron instability. Attempts to give a 
quantitative theory of the magnetron were not very success- 
ful, but Brillouin flow found important applications in beam- 
type microwave devices, such as the traveling wave tube3 
(cylindrical beams) and the French M-type backward wave 
oscillator4 (planar beams). In these applications, good quan- 
titative theories of the beam dynamics, together with their 
interaction with slow-wave circuits, were possible.5 In the 
case of the M-type backward oscillator, the instability of the 
thin beam resulted in a reduced start-oscillation current.6 In 
the case of magnetically focused hollow beams, the instabil- 
ity resulted in beam breakup.7 However, most microwave 
device researchers of the time did not think of their beams as 
plasmas. 

perimentally and theoretically. Considerable attention was 
given to the equilibria and their stability.lOY’l The diocotron 
instability was further analyzed and the analogy with two- 
dimensional (2-D) incompressible inviscid fluid flow was 
recognized. “,il An excellent and comprehensive review of 
this phase of the non-neutral plasma research is found in the 
two volumes on non-neutral plasmas by Davidson.‘23’3 

Confinement of pure electron and pure ion plasmas using 
Penning traps became important in the 1970s and developed 
along two tracks, largely independent at first. Both configu- 
rations employ electrostatic fields for axial confinement and 
are illustrated in Fig. 2. 

The Penning trap with hyperbolic electrodes14 was intro- 
duced to contain charged particles for precision spectro- 
scopic measurements. In hyperbolic traps the electrodes are 
shaped so that the confining potential is proportional to 
r2-222’. This makes the orbit of a single particle in the trap 
particularly simple.15 In spectroscopic work, plasma effects 
are undesirable and minimized. There has been very exten- 
sive work by the chemists in ion-cyclotron resonance mass 
spectrometry in traps. Positrons and antiprotons in sizable 
numbers are trapped, contained, and transported.16,‘7 The 
densities in hyperbolic traps can be made sufficiently high 
that plasma effects become important and very low tempera- 
tures have been achieved by laser cooling. l8 At low tempera- 
tures the thermal equilibrium in a quadratic trap potential is a 
rigidly rotating spheroid of constant density. These states are 
routinely observed. Dubin” has given a theory of the plasma 
modes of cold spheroidal plasma in the rigid rotor state. 
These modes are now used as a diagnostic to determine 
plasma densities, shapes, and temperatures,20.21 the latter 
with an extension of Dubin’s theory. 

The science of plasma physics began to prosper in the 
1960s because of the interest in fusion energy, accelerators, 
and ion sources. Work on non-neutral plasmas accelerated in 
the 1970s. The cylindrical Brillouin equilibrium was verified 
over the entire range of rotational velocities.8 Charged par- 
ticles were injected and trapped in magnetic mirror fields.g A 
variety of configurations were devised and studied, both ex- 

Malmberg, Driscoll, and co-workers”’ developed the cy- 
lindrical Penning trap to study basic plasma phenomena in a 
relatively idealized situations. Many phenomena have been 
identified and studied.23-27 One of the major developments to 
come from this line of investigation is the new experimental 
method for the study of two-dimensional (2-D) vortex 
dynamics,24 a subject of longstanding interest in the field of 
fluid mechanics. A good summary of more recent research on 
non-neutral plasmas will be found in two AIP Conference 
Proceedings.28Y2g 

*Paper 7RV1, Bull. Am. Phys. Sot. 39, 1693 (1994). The remainder of this paper deals with 2-D phenomena 
bvited speaker. in cylindrical pure electron plasmas, and is organized as fol- 
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TABLE 1. Advances in non-neutral plasmas (the last column indicates ref- 
erences in the text). 

1945 Brillouin equilibrium 1 
1954 Beams in microwave tubes 3,4,5.6 
1965 Hyperbolic ion trap 14 
1968 Relativistic beam equilibria 9 
1974 Book on non-neutral plasmas 12 
1975 Cylindrical electron trap 22,23 
1987 Collisional equilibration 25 
1989 Vortex dynamics 24,26,27,33,34 
1991 Modes of a spheroidal plasma 18,19,20,2 1 
1992 Bernstein modes 46 
1994 Collisionless damping and trapping 36 

lows. In Sec. II we summarize the Brillouin equilibrium, the 
2-D drift-dynamic equations for low frequencies, low densi- 
ties, and zero temperature. Their similarity with the Euler 
equations for 2-D inviscid incompressible fluid flow”*“‘23 is 
reviewed, and a few simple but important, results are cited. 
In Sec. III we discuss the linearized equations for situations 
in which the density and angular velocity depend on radius 
(shear-flow) and instabilities when the density and angular 
velocity profiles are nonmonotonic. In Sec. IV internal per- 
turbations, collisionless (Landau-like) damping of the re- 
sponse to an applied pulse, and the trapping of fluid elements 
is discussed. Damping can be understood in terms of phase 
mixing because of the different angular velocities with which 
persistent density perturbations are convected at different ra- 
dii. Experimental evidence is presented for trapping of the 
fluid by the wave. In Sec. V the possibility of echoes arising 
out of the nonlinear interaction between two applied pulses is 
discussed. In Sec. VI we discuss high-frequency (cyclotron) 
modes, where inertial terms and plasma temperature are im- 
portant. Finally, in Sec. VII some unsolved problems con- 
nected with the above are enumerated. 

Il. TWO-DIMENSIONAL CYLINDRICAL DYNAMICS 
AND THE INVISCID FLUID ANALOGY 

The Brillouin steady state for a cold cylindrical non- 
neutral plasma is one in which the inward magnetic force 
due to the rotational angular velocity cancels the outward 
electrostatic repulsive force of the charges and the outward 

a. b. 

slow wave circuit 

IIIIII 
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FIG. 1. Brillouin Flow. (a) Cylindrical, (b) planar. (b) is shown with a 
slow-wave circuit, as used in Backward Wave Oscillators. 

FIG. 3. Rotation frequency versus plasma density in Brillouin equilibrium, 
Experimental points are from Ref. 8. 
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FlG. 2. Penning traps. (a) Cylindrical and (b) hyperbolic. Radial contain. 
ment is, by the axial magnetic field and axial containment, is electrostatic, 

centrifugal force at every radius. When the density no(r) is 
independent of the radius, the angular velocity of rotation 
oo(r> is also independent of radius, the so-called rigid rotor 
state. The rotation frequency is determined by the force- 
balance equation, 

w;-w0wc+4/2=0, (1) 
and the solutions of this equation, which are well known, are 
depicted in Fig. 3, along with experimental data.8 At the 
maximum density, CO; = 0;/2, the Brillouin limit. Most ex- 
periments on pure electron plasmas, which will be the focus 
of this paper, are at low density, in the lower left corner of 
Fig. 3, where I$~w:. Small-amplitude 2-D perturbations 
from the rigid rotor steady state are surface waves, traveling 
around the perimeter -exp( im O- iot), as illustrated in Fig. 
4. There are discrete low-frequency and high-frequency sur- 
face modes: 

o=[m- 1 +(cz/~)~~]u~, (24 

Normalized Density 2 we/& 
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m=l m=2 m=3 

FIG. 4. Surface modes of a cylindrical non-neutral plasma with constant 
density. 

o=o,+[m- 1 -(alb)*m]w”, 

where a and b are the radii of the plasma and a surrounding 
metal cylinder, respectively. The m= 1 modes are simple 
center of mass modes and the sum of their frequencies is 0,. 
The frequency of the m= 1 low-frequency mode, 
o= q,(alb)“, depends only on the mean density within the 
cylinder. These modes have no z dependence (k,= 0). With 
z dependence -exp(ikz) the modes propagate in the z di- 
rection as well. Axially propagating modes have been 
analyzed,1513*30 and they are similar to the Trivelpiece- 
Gould modes3* of a neutral plasma, except that plasma rota- 
tion adds a new feature. For m = 0, plasma rotation does not 
matter, and the axially propagating modes have betn studied 
experimentally.22 

For low density and low frequencies the inertial terms 
can be neglected, e.g., the first t&m in Eq. (l), and the drift 
approximation can be used in which the electron fluid veloc- 
ity is given by v=(ExB~)/B~.~F~~ electrostatic disturbances 
E=-VC,& so that V..v=O, and 2-D fluid flow is incompress- 
ible. Since ~=-V~XB~B& the flow is along equipotentials 
and C$ is, aside from a factor l/Bd, the streamfunction. Fur- 
thermore, the vorticity (z component) VXV=V*~/B, is, for 
a pure electron plasma, equal to neleoBo. The density is 
related to the velocity by the continuity equation, which, 
because V.v=O, can be written as drzldtfv-Vn=O. This 
means that the density is simply convected with the flow. 
The fact that these equations have the same form as the Euler 
equations for an inviscid ordinary (uncharged) fluid was rec- 
ognized early in the study of non-neutral plasmas.” A com- 
parison of the two sets of equations is given in Refs. 11 and 
24. Only in the past half-dozen years has this similarity been 
exploited experimentally. It has produced some beautiful ex- 
perimental results in 2-D vortex dynamics,‘4.B and made 
contact with a large body of literature in theoretical and com- 
putational vortex dynamics in the field of fluid mechanics. 

Perhaps one of the most striking examples is the merger 
of two vortex patches when their initial separation is less 
than a critical value, about 1.7 times the diameter of the 
vortex patch. This was a longstanding prediction in fluid me- 
chanics, but it was first demonstrated experimentally in a 
definitive manner by Fine et al. in a pure electron plasma.26 
This work also provides an excellent example of the ability 
to image the line-averaged plasma density (proportional to 
vorticity) when it is dumped. 

-0 0.4 0.8 1.2 1.4 
kzt 

FIG. 5. Growth rate versus thickness for a planar Brillouin beam. 

III. RADIAL DENSITY PROFILES AND STABILITY 

The instability of the planar beam described in the Intro- 
duction has a cylindrical analog. It was first demonstrated 
experimentally in hollow electron beams by Kyle and 
Webster.7 They showed that as the hollow beam propagates, 
it tends to break up into a number of spiral vortices, the 
number depending on the thickness of the beam. This is the 
simplest example of a nonmonotonic density profile: con- 
stant density between two radii, r, and r2, and zero for r< r1 
and for r> r2. The flow is incompressible and sheared, with 
the angular velocity of electrons at the outer surface greater 
than at the inner surface. The stability boundaries for this 
geometry were determined by Levy.” The notion of surface 
waves, running around the inner and outer surfaces at differ- 
ent velocities, is useful. The wave on the outer surface has 
negative energy, and the wave on the inner surface has posi- 
tive energy. If the beam is not too thick (compared with the 
azimuthal wavelength) the fields of the positive and negative 
energy surface waves overlap, and their velocities are suffi- 
ciently close that they are coupled. This allows them both to 
grow exponentially. It is easy to show that the growth rate 
depends on <he ratio of the beam thickness to the azimuthal 
wavelength, and has a maximum,6,32 as shown in Fig. 5. In 
experiments where the instability is initiated by noise, the 
wavelength with the fastest growth rate should be observed, 
and this ‘decreases with beam thickness. This feature of in- 
stability has been nicely demonstrated by Peurrung and 
Fajans33 in a cylindrical trap, as shown in Fig. 6. 

In the most pure electron plasmas, the radial density dis- 
tribution is not uniform, though approximately axisymmet- 
ric. In this case the angular velocity also depends on radius, 
and the flow is sheared. This significantly increases the com- 
plexity and subtlety of the dynamics. The dependence of the 
angular velocity on the radius is detei-mined by the density 
through the equation 

no(r’jr’ dr’. 

It is convenient to normalize the density and angular velocity 
profiles to their central values we(r)= oo(0) f(r) and 
no(r)=no(0) g(r), where oo(0)=w~(O)/2w, is the central 
rotation frequency. Such profiles are expected to evolve to 
the rigid rotor steady state, but in many experiments the time 
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FIG. 6. Images of unstable hollow plasmas showing the azimuthal wave- 
length for three thicknesses (0.67, 0.17, and 0.14 cm). Left side: before 
instability; right side: after onset (from Ref. 33). 

to do so is too long for this to be achieved. This evolution is 
sufficiently slow that, for most oscillation and wave phenom- 
ena, the profiles can be regarded as steady. Examples of 
monotonic and nonmonotonic density profiles and the result- 
ing angular velocity profiles that will be discussed in this 
paper are shown in Fig. 7. The last of these, Fig. 7(d), is the 
hollow beam described briefly above. 

For this paper we are interested in the smooth profiles 
shown in Fig. 7(b) and Fig. 7(c). Linear modes of these 
profiles have many similarities with (and some differences 
from) longitudinal plasma waves in a Vlasov plasma. In Ref. 
11, smooth profiles were examined, and it was shown that a 
necessary condition for instability (the existence of a tempo- 
rally growing eigenmode) of such a system is that dno( r)ldr 
change sign, i.e., that the profile is nonmonotic, such as 
shown in Fig. 7(c). This is not a sufficient condition, how- 
ever. Figure 7(c) depicts (approximately) the profile used in 
the experiment of Driscoll et aZ.,34 which demonstrated that 
the m = 2 mode was unstable. In that work, a small seeded 
m = 2 perturbation was seen to grow exponentially from the 
linear regime and to form two vortices (density clumps) that 
eventually merge, as illustrated in Fig. S.34 Eventually, the 
high-density annulus ends up in the center, and the density 
profile becomes, in a coarse grain sense, monotonically de- 
creasing. 

This situation was also studied34 with a 2-D fluid code, 

stable 

r 

stable 
t 

~~rj 1~~~~~~) 
r r 

FIG. 7. Density profiles and corresponding angular velocity profiles, mono- 
tonically decreasing and stable (upper), and hollow profiles that are unstable 
(lower). 

which solved the nonlinear equations described in Sec. II on 
a 256X256 square grid on which the potential at all points 
outside an inscribed circle, corresponding to the conducting 
wall, was set to zero. A successive over-relaxation Poisson 
solver was used and the density was advanced in time using 
a 1.5 point Arakawa algorithm.35 The density at six times in 
the evolution, corresponding to about 20 rotation times of the 
column is shown in Fig. 9. The first “frame,” where the 
m = 2 perturbation of the annulus is hardly visible, is in the 
linear regime. By the third frame the two large vortices have 
formed, and in the fourth frame they are beginning to merge, 
Two density holes persist near the edge for some time. Re- 

FLG. 8. Measured z-averaged density n(r,6) at t=SO, 120, 170, and IO00 
/-IS (a)-(d), as m = 2 hollow profile instability grows, saturates, and evolves 
to a stable monotonic profile. The darkest areas correspond to the highest 
density (from Ref. 34). 
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where G,( r, r ‘) is the Green’s function for the problem with 
4,(O)=+,(b)=O. In Eq. (6) the potential is split into the 
part produced by the plasma and the externally applied part. 
Here 4i ext is the vacuum potential due to the voltages ap- 
plied to the conducting wall at r = b. 

There are two types of problems that one might want to 
solve: (a) an initial value problem where the initial density 
n, (r,O) is given, and one wants to know how the density, 
potential, etc. evolve subsequently in time, or (b) a situation 
where a voltage pulse is applied to a segment of the conduct- 
ing electrode at t=O when the plasma is otherwise undis- 
turbed, and one wants to know how the plasma responds to 
the pulse. A Laplace transform with respect to time is suit- 
able for either type of problem. In the latter case, n i (r,O) = 0 
and Eqs. (4) and (5) become 

0) 

and 

FIG. 9. The fluid code calculation of n(r, 6’,t) at six successive times (a)-(f) 
in the evolution of the m=2 hollow profile instability. The darkest areas 
correspond to the highest density. 

cently, Huang has shown that the asymptotic (late time) ex- 
perimental density profile is reasonably well fit by a mini- 
mum enstrophy theory rather than a maximum entropy 
theory.” 

IV. CONTINUUM OF MODES, COLLISIONLESS 
DAMPING, AND FLUID TRAPPING 

Before describing experimental results on collisionless 
damping and trapping,36 we review the linear theory of dis- 
turbances in stable profiles, following an approach similar to 
that in Ref. 11. We use the usual notation for unperturbed 
and perturbed quanties, denoting them by subscripts 0 and 
1, respectively,.. and we assume angular dependence of 
exp( im 0). The linearized Poisson’s equation becomes 

and the linearized continuity equation becomes 

dnl im dno 
dt+imwonl-x----- q5,=0, 

o dr 

where we have used the drift equation v,=B,XV+,IB& the 
fact that uo=rwo is in the 19 direction, the nonlinear term 
u i -V n, has been neglected. Here no(r) is assumed to be 
known and o&r) is determined from it by Eq. (3). One can 
write the solution of Eq. (4) as 

m da0 
(o-mwo)N1=---g-~@l, 

0 

where @ i (r, w) and N, (r, w) are the Laplace transforms of 
the potential and density. We use, for the Laplace variable, 
,r = - io, with o in the upper half-plane. Eliminating Nr 
gives 

d2al 1 dQl m2 em 
+~~~-~~,+- 

dno ldr 

-2-F r dr rBOeO (w-moo) 
(P1=0. 

(9) 
This equation has been extensively studied. Briggs et al.‘* 
were the first to give a general discussion of the analytic 
properties of Qp, in the complex w plane and note the simi- 
larity of this situation with that of Landau damping of lon- 
gitudinal plasma waves. Here <pi (r, w) and N, (r, w) are de- 
fined in the upper-half w plane. As the real w axis is 
approached from above, the denominator of Eq.- (9) becomes 
singular if the real part of w lies in the range 

where tia min and 00 ,,,% are the minimum and maximum ro- 
tation frequencies in the plasma. This gives rise to a branch 
line along the real frequency axis between these limits, as 
shown in Fig. 10(a). The potential function can be analyti- 
cally continued into the lower half-plane, as discussed in 
Ref. 11, leading to the deformed contour of Fig. 10(b). 

As with Langmuir waves, one can show that Eq. (9) has 
a continuum of singular eigenmodes (generalized functions) 
in the frequency range given by Eq. (lo), similar to the Van 
Kampen-Case modes37’38 for Langmuir oscillations. This 
leads to two complementary views, or descriptions, of colli- 
sionless damping, which are equally valid. Although the dio- 
cotron mode problem is similar in many ways to the Landau 
problem,3g it is different in two significant ways: the fre- 
quency range is limited by Eq. (10) and each (angular) ve- 
locity is associated with a different radius. 
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FIG. 10. (a) The Bromwich contour in the complex o plane used in invert- 
ing the Laplace transform. (b) Deformed contour reveahng the simple pole 
in the Iower half-plane. 

For comparison with experiments6 we are primarily in- 
terested in the response of the plasma to an applied pulse. We 
need solutions of Eq. (9) in which cP,( b,w), the Laplace 
transform of the potential at the conducting wall is equal to 
the applied potential. Here Cp, must vary as rm near the ori- 
gin. To compare with experiment we need the radial electric 
field at r= b from which the charge induced on the wall can 
be obtained. For special profiles of the form, 
f(r) = 1 - ( r/b)2”, Comgold4o has shown that the solution of 
Eq. (9) can be expressed in terms of the hypergeometric 
function, and the location of the pole illustrated in Fig. 10(b) 
can be determined analytically. 

We are interested in more general profiles, no(r) and 
oo(r), where solutions are not necessarily expressible in 
terms of known functions. Our approach is to numerically 
integrate Eq. (9) with respect to r for a specific density pro- 
file and for a discrete set of equally spaced frequencies wk 
along the contour shown slightly above the real frequency 
axis in Fig. 10(a). We obtain the temporal response (wall 
charge) from an inverse Discrete Fourier Transform (DFT) of 
~01d@1(r,41~rlr=b. To compare with experimental mea- 
surements the admittance function36 is defined by 

Y(w)= +iw2rreoF,Fz 
r[SDl(r,w)ldr] 

@l(r,o) ’ 
(11) 

r=b 

where F, and F2 are form factors of the sectorized wall 
conductor. The admittance function is the Fourier transform 
of the current response in sector 2, due to an impulse applied 
to sector 1. For the smoothness of this function, there is a 
requirement that the ratio of the step size in the radial inte- 
gration and the step size in frequency satisfy the inequality 

Normalized frquency ti 

.,.,,,..... ,.* . . . . .; ,....., .,. ,.,,,., ,,,,,,. 

. _ 

,. : 
i., _ 

^ . 

centrat rotation periods 

FIG. 11. (a) Real and imaginary parts of (E,t/&),,, as a function of 
frequency normalized to the central rotation frequency, for m = 2. The ver- 
tical dotted line corresponds to the m= 2 resonant frequency, 
w=O.904e&O), for this profile. (b) The semilog plot of the envelope of the 
inverse transform of (E,,/c$,),=~. The initial decay changes from exponen- 
tial to algebraic (from Ref. 36). 

A& A o/( d o,ldr) . Evaluation of transform functions at 
frequencies at a distance IT slightly above the real frequency 
axis, followed by taking its inverse with a DFT, which as- 
sumes w to be real, gives rise to an additional exponential 
damping factor, e - (rf, which can easily be corrected for. The 
real and imaginary parts of the principal factor in the admit- 
tance function, (rE,,l@, )r=b, are shown for a typical mono- 
tonic density profile and for m = 2 in Fig. 11. Also shown in 
Fig. 11 is the m = 2 impulse response obtained from the in- 
verse DFT of (rErll@L)r=b. The admittance has a nonzero 
real part only in the frequency range described by Eq. (10) 
when there is a resonance in the denominator of Eq. (9). The 
admittance function is defined so that Re{ Y( o)}> 0 corre- 
sponds to absorbtion. Since Re{ Y( ,)I< 0 in this frequency 
range, energy is released when a disturbance is excited, so 
the system is a negative energy system. 

The real and imaginary parts Of (r&r/@ r)?=b shown in 
Fig. 11 can be approximated by a simple pole below the real 
frequency axis plus a small remainder function, 
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FIG. 12. (a) Schematic of a cylintiql structure for plasma excitation and 
trapping, (b) the phasing of a first octupole for exciting an m=2 distur- 
bance, (c) the configuration of the second octupole for signal reception, and 
(d) the configuration of the second octupole for the negative energy test 
(from Ref. 36). 

.3_ 

ioB 
Y(w)= (w-w,+iyz) -+wm)P , ! (12) 

where B is negative because of the negative energy property. 
Equation (12) is consistent with Fig. 10(b), which shows a 
simple pole below the real frequency axis. Here S(o) comes 
from integrals along the branch cuts. The exponential decay 
that dominates the early time behavior is associated with the 
pole and the algebraic decay that appears later is associated 
with Z(W). While the precise details of behavior of 
(rE,ll@,)r=b or Y(o), and thus of the impulse response, 
are profile dependent, the general features. are the same for 
qualitatively similar profiles. The frequency W, corresponds 
to twice (because m=2) the rotational angular velocity at a 
radius rs near th&outer limit of the plasma (-0.8X the 
plasma radius). 

48) 1 

FIG. 13. Decay of the envelopeof the m=2 signal at about 400 kHz excited 
by the rf pulse with voltages 10 (lower left), 20.40, 6q, 80, 120, 160, 200, 
250, 300,400,500, 600,700, and lOOO’(uppermost) mV, plotted on a semi- 
log scale with a vertical scale (from Ref. 36). 
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FIG. 14. The 2-D fluid code calculation of damping and trapping. Plotted is 
the charge induced on one octant of the cylinder, and in each successive 
trace the excitation amplitude is doubled and the vertical scale is halved 
(from Ref. 41). rll 
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Coliisionless damping of the m=2 mode in. the.line& 
regime has recently been observed by Pillai36 using the ex- 
periniental apparatus depicted’in Fig. 12. The envelope of the 
decaying sine wave, .which is excited by a 5. ,us sinusoid$ 
burst (about three cycles), is shown in l?ig. 13 for v+ou:. 
amplitudes of the burst. Each trace k.$e average.,@f 20 
“identical” traces, and an example of ati actual sinusbidal 
signal is shown in the inset. The lowest three traces ar?es- 
sentially in the linear regime. As the amplitude of the exci- 
tation is increased, “bounce” oscillation begin to appkar, in- 
dicating trapping of the fluid near the resonant layer. An 
analysis of the bounce frequency, when corrected for decay 
of the wave amplitude, shows that it is proportional to the ~-_. 
square root of the applied voltage. Trapping in fluids in shear 
Bloti was anticipated by Kelvin, with his “cats eyes” describ- 
ing fluid trajectories. In Ref. 11 it was predicted that the 
“bounce” or trapping frequency should be given by 

WbpmJl~l,~(r)lrl~~Bo. 

Pillai36 observes that the bounce frequency is proportional to 
the applied potential to the power 0.55&O. 10 using 2 22 
datasets. Using the 2-D fluid code described earlier, both 
collisionless damping and amplitude modulation-of the de- 
caying wave due to trapped@tick% have been verified.“! 
Figure 14 shows a calculation using this fluid code of the 
charge induce4 on one octant of the conducting cylinder 
when a three-cycle sinusoidal burst .is. applied. The linear 
decay rate agrees well with that obtained by numerical solu- 
tion of the linear differential equation and the bounce fre- 
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FIG. 15. A decrease in the decay rate of the m  = 2 response versus resis- 
tance when a resistance R is connected to the wall sectors, as shown in Fig. 
12(d). The line is a least squares fit to the experimental data (from Ref. 36). 

quency is proportional to the square root of the amplitude. 
deGrassie23 first looked for linear collisionless damping, but 
his detection sensitivity did not allow him to study the linear 
regime. Instead, he found a much slower decay whose rate 
decreased with increasing amplitude, much like the late time 
behavior in Fig. 13. He also failed to see the bounce motion. 

The negative energy feature of the perturbations has an 
interesting consequence. When energy is removed from the 
system, by external resistors, for example, the amplitude 
should grow. This was previously established for the m = 1 
center of mass mode by White, Malmberg, and Drisc011.~* 
For m> 1, however, the modes are already damped by the 
collisionless phase mixing process just described. When ex- 
ternal resistors are added, as shown in Fig. 12(c), the colli- 
sionless damping rate of the m = 2 mode is decreased. Figure 
15 shows the damping rate versus resistance. Furthermore, 
with sufficient external dissipation the otherwise damped 
mode can be turned into a growing mode. 

By examining the electric field at the conducting wall we 
have seen that the linear response to a short applied pulse is 
a decaying sinusoid, approximately exponential. However, 
density perturbations at each radius within the plasma persist 
indefinitely in the ideal drift approximation. This can be seen 
by inverting Eq. (8), 

-m dnO 
n*(r,t)= rB - 

@,Crm) 

o dr 
-ior dw (13) 

[o-moo(r)] e z-;;, 

time -k 

FIG. 16. Density perturbations at (r/a) = 0.93, 0.87, 0.8 I, 0.75, 0.69, and 
0.63 (traces a-e). (a) Magnitude of the Laplace transform of the density 
versus frequency atong the contour in Fig. IO(a). (b) A semilog plot of the 
magnitude of density versus time at the various radii. 
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FIG. 17. The internal nt=Z perturbation of cylindrical non-neutral plasma, 
(a) Density contours when perturbations at all radii are in phase and (b) after 
phase mixing. 

which, because of the simple pole at w= mwO(r) gives an 
undamped contribution to n I (r,t) proportional to 
exp[ - imwo( r)t] . Thus, perturbations at each radius con- 
tinue to be convected, undamped, at the local angular veloc- 
ity. The density N1 (r, w) and n , (r, t), calculated by the nu- 
merical methods described above, is shown for several 
representative radii in Fig. 16. It is seen that n 1 (r,t) does not 
decay [Fig. 16(b)], but has different frequencies [Fig. 16(a)] 
at different radii. However, the electric field at the conductor 
(and therefore the charge on the conductor) decays away, 
because it is caused by (a weighted average of) charge den- 
sity perturbations at various radii. This result is expressed 
mathematically as the derivative with respect to r of the 
integral in Eq. (6). Because of the radially dependent phase 
factor in the integrand, contributions from different radii 
have different frequencies and phase mix away. The initial 
and phase mixed density perturbations are illustrated in Figs. 
17(a) and 17(b), respectively. 

V. FLUID ECHOES 

The dynamics of the ideal fluid is time reversible and 
one suspects, by analogy with the cyclotron echoes43 and 
plasma wave echoes,‘@ that this system might also exhibit 
echoes. The application of a second pulse might partially 
unmix the undamped phase-mixed remnants of the first 
pulse, and create a coherent response at a later time, long 
after the responses to both pulses have decayed away. The 
mixing occurs because of different angular velocities so, by 
analogy with the plasma wave echo, we examine the effects 
of two pulses applied to the electrode structure shown in Fig. 
12. The connections are arranged so as to produce potentials 
with different angular dependences: m I for the first pulse and 
m2 for the second pulse. For simplicity, the time dependence 
of the applied pulses are taken to be VI tI S(t) and 
V2t2 S( t- T), respectiveIy. This form serves as the Green’s 
function (in time} for other pulse shapes. The following no- 
tation is used: 

~=#o(r)+~1(r,t)+~2(r,t)S~3(r,t), (144 

n=no(r)+nl(r,t)+n2(r,t)en3(r,t), (146) 

where the subscript 0 refers to the steady state, subscripts 1 
and 2 refer to the first and second applied pulses, and sub- 
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script 3 refers to the echo. The echo results from the nonlin- 
ear interaction between pulses 1 -and 2. We treat the first and 
second pulses in the linear approximation (as described 
above), and seek the nonlinear interaction between the two 
pulses to obtain the echo response to second order in the 
amplitudes. To this order the continuity equation for the echo 
may be written as 

dn0 anI u2e an1 
f-$+coo~+v,q-y=-u2~-j-y-~ 

an2 Vlfj an? -----..z 
-u1r &. r de' (15) 

where the nonlinear terms arising out of the interaction of the 
pulses 1 and 2 have been put on the right-hand side. These 
terms, which will be denoted by s3( r,t), act as source terms 
for the echo, and are obtaitied from the linear solutions for 
pulses 1 and 2. The left-hand side is the usual linearized 
continuity equation. 

Since we are using complex exponentials to describe 
quantities that are real and, by convention, taking the real 
part (or adding the complex conjugate and dividing by 2j, 
some care is required with the quadratic source term. Since 
the source term s3(r,t) consists of products of time- 
dependent quantities, the transform of s3 is given by the 
convolution of the transforms of the individual quantities. 
Also, the complex conjugate of one of the transforms should 
be used. We do this for pulse 1, so that the echo has angular 
mode number m3=m2-lmll>0. Of the four terms in s3, 
the first dominates because nl(r,t) contains terms propor- 
tional to exp[-iml~O(r,t)], unlike ul(r,t). Because it is 
differentiated with respect to r, it contains terms that grow 
with t. In transform space, the source term has the form 

- im2 
S3(r,m)+= 7 I 

Qz(r,ir)--o’) 
dNl(r,o’) dw’ 

0 dr 29~’ 
(16) 

in the dominant term approximation. 
We now describe the method of solution. Equations (7) 

and (8) must be solved, for a specified density profile, to 
obtain Q1(r’,o), Nl(r,w), (P2(r,w), andN2(r,W) for pulses 
1 and 2. Analytic solutions can only be obtained for special 
profiles, so we resort to numerical methods and consider dis- 
crete values of r and o, rj=j Ar, and wk=k Aw+iv. In 
particular, we use 512 or 1024 discrete values of o, so as to 
use DFTs to obtain the time functions. For each of the dis- 
crete values of o, we numerically integrate Eqs. (7) and (8) 
from r = 0 to r= a using a fourth-order Runge-Kutta 
method, so as to obtain values of the functions at 500 radial 
points within the plasma. Since we also need aN1(r,o)ldr, 
it is also calculated during the numerical integration at the 
500 radial points. The potentials so obtained must vary as 
(r)ml and (r)Q near the origin and match the Laplace trans- 
forms of the applied potentials at the cylinder, respectively. 
The convolution;Eq. (16), is then done numerically to obtain 
S3(rJ ,tik). The equations for the echo pulse are similar to 
those of pulses 1 and 2, except that instead of being driven 
by potentials applied to the conducting cylinder; the source 
term is S3 : 

FIG. 18. Time dependence of the response to two applied pulses: m=2 at 
t=O and m=4 at t=~, followed an m=2 echo at t=27. Upper curve: 
Waveforms of the electric field at the wall; lower curve: semilog plot of the 
magnitudes of waveforms. The echo amplitude has been increased for clar- 
ity. 

d2Q3 2 
1 d@3 m3 N3e 

drl- 
+--- 

r dr ‘;T @3=7 

m3 dnb 
(w-m3qJN3=-- r~ dr @,+iS,. 

0 

(17) 

These are also integrated numerically in radius for 512 dis- 
crete freqvencies and inverted with a DFT to obtain the time 
dependence. Figure 18 shows the response to pulses 1 and 2, 
as well as the echo for a typical profile. Here m 1 = 2, m2 = 4, 
and m3=2. In each case the time-dependent electric field at 
the wall is shown. The echo amplitude is proportional to the 
product of the amplitudes of pulses 1 and 2, Vltl V2t2 ,, is 
generally much smaller than the responses to the two pulses. 
The echo is not shown to scale in Fig. 18. 

The echo amplitude is expected to be diminished by vis- 
cous effects, as the time between the first pulse and the echo 
lengthens. This is because perturbations at nearby radii have 
been convected by substantially different amounts in azi- 
muth, causing the radial gradients to become very large., 
Thus, the echo phenomenon may form the basis for studyjng 
viscous effects. However, the particles primarily responsible 
for the echo are restricted to the outer radii of the plasma, so 
that is probably the only region that could be probed. 

VI.LHIGH-FREQUENCY MODES 

So far the discussion has been limited to low frequen- 
cies, where the drift approximatiijn is valid. The 2-D modes 
near the cyclotron frequency alSo exist, whose frequency is 
given by Eq. (2b) for uniform densitjl (the rigid rotor steady 
state). The m = 1 center of mass mode lies below the cyclo- 
tron frequency by the diocotron frequency, and the higher 
modes are upshifted by the rotation of the plasma. Again, 
this Section focuses on nonuniform density and angular ve- 
locity profiles, such as shown in Fig. 7(b). Inertial terms can 
no longer be neglected, and expressions for the fluid velocity 
in’s nonuniformly rotating fluid become much more compli- 
cated. 

An analysis of the high-frequency behavior,45 near the 
cyclotion frequency, of a cold nonuniformly rotating pure 
electron plasma has been carried out. The ‘mode structure aid 
the admittance function Y(o), as defined in Sec. IV, has been 
evaluated for a number of stable monotoniti -profiles. The 
results are not unlike those for the’ low-frequency diocotron 
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FIG. 19. Tbe real and imaginary parts of the admittance function versus 
frequency for high-frequency modes (T= 0). When Re{ Y(w) ) > 0 absorp- 
tion occurs due to an upper hybrid resonance somewhere within the plasma. 
Absorption bands are upshifted by rotation (from Ref. 41). 

modes described in Sec. IV. For m = 1 there is a single dis- 
crete mode lying slightly below the cyclotron frequency, 

o=o,-(w;)/2w,. (1% 

For each m greater than 1 there is an absorption band, 

(m- lb0(a)<(w-q.)<(m- 1)00(O), (20) 
upshifted from the cyclotron frequency by the Doppler effect 
of rotation. As with the low-frequency modes, an alternative 
point of view is that the absorption band is associated with 
continuum of singular normal modes. A typical result for the 
cold plasma admittance function is shown in Fig. 19. These 
are positive energy modes, as demonstrated both theoreti- 
cally and experimentally. 

Experimentally, the m = 1 discrete mode is found, as ex- 
pected, below the cyclotron frequency, but the m> 1 absorp- 
tion bands are not found.46 Instead, in the parameter range 
where the absorption bands are expected from the cold 
plasma theory, a set of discrete modes for each m greater 
than 1 is found. Figure 20 shows a two-dimensional scan in 
density (horizontal axis) and magnetic field (the vertical 
axis). The modes for m> 1 have been interpreted as radially 
trapped (by the density and angular velocity profiles) azi- 
muthally propagating Bernstein modes.47 Bernstein modes 
arise out of finite-temperature (finite Larmor radius) effects, 
which were not included in the cold plasma rotating fluid 
analysis. However an approximate modification of the 
theory, which includes electron temperature, has been 
given,45*46 and the temperature required to match the experi- 
mental observations is consistent with other determinations 
of plasma temperature (0.5-2.0 eV). 

For m> 1 the effect of plasma temperature is to turn the 
continuous absorption band described by Eq. (20) into a 
band in which Bernstein modes can propagate. This is simi- 
lar, in a general way, to the effect of temperature on the 
modes of a neutral plasma column: Tonks-Dattner modes,48 
which are propagating Langmuir oscillations trapped by the 
radial density profile. Similarly, in a magnetized neutral 
plasma, the Buchsbaum-Hasegawa modes49 near the second 
harmonic of the cyclotron frequency, arise from Bernstein 
waves that are trapped because of the radial density gradient. 
In both cases the inclusion of temperature raises the order of 

FIG.20. 

time I--* 
b density 

The experimental scan of k = 0 modes near the cyclotron frequency _ in which flf, vanes by a tew percent. There is a single m= 1 center of mass 
mode below the cyclotron frequency, and bands of m  = 2 and m = 3 Bem- 
stein modes above. 

the differential equation and results in additional “thermal” 
modes in the region where there would otherwise be a con- 
tinuum of singmar eigenmodes. 

In the remainder of this section we concentrate on the 
m = 1 center of mass mode, whose frequency is just below 
the cyclotron frequency. We describe a measurement of 
spontaneous thermal excitation of this mode and a method 
for using fluctuation measurements to determine electron 
temperature. The method consists of measuring the noise 
power delivered to a low noise receiver caused by the fluc- 
tuating currents that are induced on the sector electrodes sur- 
rounding the plasma, which are associated with thermal ex- 
citation of the m = 1 mode. The received power is compared 
with the power from a calibrated reference noise source, and 
the ratio of the powers is denoted by p. The absorbtion co- 
efficient, A, is also required to determine the temperature. 
This procedure results in a nondestructive method of tem- 
perature determination for pure electron plasmas. In related 
measurements, spontaneous emission associated with the 
m> 1 Bernstein modes has also been observed, and the in- 
ferred temperatures are in the same range, although these 
measurements are subject to greater shot-to-shot irreproduc- 
ibility. Our method is a variation on the method used by 
Stenze15’ for neutral afterglow plasmas, and is related to the 
stored ion calorimeter discussed by Wineland.” These situa- 
tions differ drastically from the usual radiation transport re- 
gime in astrophysics and in fusion devices, where radiation 
is emitted and absorbed over many wavelengths. This radia- 
tion also differs markedly from Larmor radiation from a col- 
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FIG. 21. Schematic for the measurement of radiation temperature from the 
m= I mode. Emission and absorption are measured on alternate shots and 
before and after the emission measurement, a comparison with a calibrated 
noise source is made. 

lection of independent single particles, since only a single 
collective mode of the plasma is involved. 

A schematic diagram of the experimental configuration 
is shown in Fig. 21. To increase the sensitivity to the noise 
fluctuations, the signals from all eight sectors of an octupole 
section are combined, with phasing so as to be sensitive $0 
the ?n = 1 mode, and sent to a low noise (noise figure -3 dB) 
140 MHz receiver whose bandwidth is 12 kHz. The cyclo- 
tron frequency is set slightly above the receiver frequency, so 
that, as the plasma density decays, the m = 1 mode frequency 
sweeps upward through the receiver frequency. By incre- 
menting the magnetic field, and thus the cyclotron frequency, 
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FIG. 22. (a)-(c) Emission and reflection traces versus time. As the density 
decays the resonance sweeps through the receiver frequency, and by chang- 
ing the magnetic field slightly,. the resonance can be positioned at various 
times. (d) A semilog plot of density versus time. Each tick mark is a factor 
of 10. 

0 

E[G. 23. (a) Emission and absorption versus time. (b) Temperature versus 
time. Here 35 traces similar to those shown in Fig. 22 have been used. ( 

by a small amount on successive shots, the m  = 1 mode reso- 
nance can be made to sweep through the receiver frequency 
at various times in the plasma decay. Time-dependent emis- 
sion and reflection measurements [the latter using the radio 
frequency (rf) generator] are made on alternate shots. This is 
illustrated in Fig. 22, which shows both the noise emission 
and the reflected power (inverted trace) as a function of time 
for three representative different values .of the magnetic field. 
At the beginning and end of an emission trace, the receiver is 
switched briefly to the reference noise source at temperature, 
Tref. All elements of the measurement system are 50 0 co- 
axial components and the insertion loss of all elements must 
be accounted for.,. 

Typical experimental results: emission, absorbtion, and 
radiation temperature, are shown in Figs. 23(a)-23(b). These 
are obtained by fitting Lorentzian curves to the type of data 
shown in Fig. 2k,‘and using the maximum values. The results 
from about 20 shots for the same parameters are averaged to 
obtain more precise values. Energy that is not reflected from 
the plasma is presumed absorbed, and Fig. 23(a) shows the 
absorption coefficient, A, the fraction of the power absorbed 
by the plasma when the rf signal generator is on. Since the 
errors in the absorption data are small, a polynomial fit is 
shown, and it is used in determining the temperature. Note 
also that A is close to unity! Figure 23(a) also shows the 
noise power received from the plasma, relative to that from 
the calibrated noise source, p. The radiation temperature of 
the plasma shown in Fig. 23(b) is then determined from the 
relationship TIad =( p/A) Tref. The temperature is 0.5-0.6 eV, 
and changes only slightly over 400 ms; whereas the plasma 
density decays by nearly a factor of 10 during this time. The 
near constancy of the temperature has been observed on most 
measurements, although the value of the temperature varied 
between 0.5 and 3.0 eV with different injection conditions. 
These temperatures are typical of those obtained by other 
methods. 

Because the cylinder radius (2.5 cm) is small compared 
to the free space wavelength (215 cm) of the radiation, these 
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FIG. 24. The model for emission and absorption. Left: electrical schematic 
of the experiment. Right: equivalent electrical circuit with the plasma re- 
placed by its equivalent noise source and impedance function. 

results can be interpreted in terms of the electric circuit 
model shown in Fig. 24. If the plasma is at temperature T, 
the power emitted per unit bandwidth into the load Ru (50 a) 
is KTA, where K is Boltzmann’s constant and A is the ab- 
sorption coefficient. The latter is obtained from the equiva- 
lent circuit as A = 4RoRIIRo + Z( w)[*, where the impedance 
function, Z(o) = 1 /Y(w), is the inverse of the admittance 
function and R is the real part of Z(W). 

One of the surprising results is that the m = 1 mode ab- 
sorbs energy at all. The m = 1 mode is expected, from el- 
ementary considerations, to be lossless. Furthermore, as il- 
lustrated in Fig. 23(a) the absorption coefficient changes only 
slightly, while the density decays by nearly an order of mag- 
nitude. It is possible to obtain the frequency shift and line- 
width versus time of the m = 1 mode from the Lorentzian fits 
to the data of Fig. 22. These are shown in Fig. 25. The 
linewidth is IO-40 kHz, a significant fraction of the fre- 
quency shift, 30- 180 l&z. Furthermore, the linewidth tracks 
the density decay. The frequency width of the mode is found 
from Aw= (dw,ldt)At, where At is the time to sweep 
through the mode, as determined from Fig. 22, and dw,ldt is 
the rate of change of the m = 1 mode frequency. Since the 
absorption coefficient A is about unity, the plasma is 
matched to the 50 R system, and therefore half the linewidth 
is due to the external system and the remaining half is inrrin- 
sic to the plasma. 

An independent determination of the linewidth of the 
m = 1 cyclotron mode has been made by measuring its decay 
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FIG. 25. Experimentally determined frequency downshift and linewidth ver- 
sus time for the m  = 1 cyclotron mode, as determined from traces similar to 
those of Fig. 22. 
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FIG. 26. A semilog plot of the free decay of the rrt= 1 mode amplitude 
versus time when excited by a short resonant burst. Traces are for 2-16 
sectors terminated in 50 s1, indicating that terminating additional sectors 
increases the decay rate. 

rate when excited by a short burst at the mode frequency. By 
adding 50 s2 resistors to various numbers (N) of the octupole 
sectors, their effect on the damping rate can be found. This is 
the high-frequency analog of the m = 1 and m = 2 low- 
frequency resistor experiments,36’42 except that here the ex- 
ternal dissipation increases the damping, indicating that the 
mode is a positive energy mode. The result is shown in Fig. 
26 and shows clearly that the damping rate increases linearly 
with N. The minimum value of N is 2, from the source and 
the receiver, giving a decay time of about 50 ,XS. To deter- 
mine the intrinsic (N=O) damping rate of the mode, the 
damping rate versus N is plotted and the intercept corre- 
sponding to N = 0 is determined. This result is shown in Fig. 
27 for several different densities. The most important conclu- 
sions are that the intrinsic damping rate is nonzero, and that, 
for low densities, the intrinsic damping rate increases with 
density. The latter is consistent with A, being approximately 
independent of density. 
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c o.ow + o.cm ' ' d 0.@%?6 + O.OlZl ' ' d 
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1’ f 1 f f I I r I I 
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FIG. 27. The measured free decay rate of the m = 1 mode versus the number 
of sectors terminated with resistors. The nonzero intercept indicates an in- 
trinsic damping of the m = 1 mode. 
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VII. DISCUSSION - -‘R. E. Pechacek, C. A, Kapetanakos, and A. W. Trivelpiece, Phvs. Rev. 

The experimental results presented above suggest some 
unresolved issues, which may lead to a still better under- 
standing of the phenomena. 

For m = 1, the cold plasma equations for a non-neutral 
plasma predict two discrete undamped center of mass modes. 
The low-frequency mode is. observed to be undamped? or 
weakly damped;52 whereas, the high-frequency mode is 
strongly damped. This origin of this damping is as yet unex- 
plained. 

Lett. 21, 1436 (1968); Phys. Fluids 14, 1555 (1971). 
‘OR. H. Levy, Phys. Fluids 8, 1288 (1965). 
“R. J. Briggs, J. D. Daugherty, and R. H. Levy, Phys. Fluids 13,421(1970). 
tzR. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, Reading, MA, 

1974). 

For rn > 1, the cold plasma equations predict absorption 
bands (continuum of singular eigenmodes) for both the low 
frequencies, w-wc, and high frequencies, w-o, . However, 
experimentally, radially trapped Bernstein modes are found 
in the frequency band in which the high-frequency absorp- 
tion band is supposed to appear. These require temperature or 
finite La&or radius (FLR) effects. However, temperature 
and FLR effects appear to be unimportant for the low- 
frequency diocotron modes. Why? 

For the collisionless damping of low-frequency distur- 
bances in sheared flows, such as those described in Sec. VI, 
what is the role and importance of viscosity? One normally 
thinks-of viscosity as a dissipative phenomenon, and it was 
found that external dissipation reduces the collisionless. 
damping rate. Does viscosity have the same effect? 

Approximate solutions of the Vlasov equation in sheared 
flow, such as those presented by Pearson53 for neutral cylin- 
drical plasmas and by Prasad et aZ.54 for a non-neutral slab 
plasma, are needed. for both the high-frequency and low: 
frequency regimes. In order to carry out such analyses, it is 
necessary to find slowly evolving self-consistent sheared 
profiles from which to start. 

Plasma temperature’ appears to decay much more slowly 
than plasma density in pure electron plasmas. This obsenia-- 
tion needs an explanation. The release of energy through the 
expansion of the plasma as the density decays probably plays 
a role in determining the temperature. 
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