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Due to the increasing role that highly charged ions play in high-precision mass-ratio measure-
ments within a compensated Penning trap, it is imperative that we investigate the dependency of the
normal-mode frequencies on the total number of trapped charges. The experimental number depen-
dency has been measured for four different ion species with various states of ionization. The abso-
lute shift in both the observable cyclotron and magnetron frequencies is 0.018(3) Hz per equivalent
electronic charge for a trap with characteristic dimension of 0.114 cm (in a 5-T field). The source of
this systematic dependency has been traced to image charges induced on the surface of the trapping
electrodes, whose electric field at the ion’s position near trap center is approximately linear in the
displacement of the trapped ions. A simple spherical model has been developed that is useful as a

guide in minimizing this systematic effect.

I. INTRODUCTION

The compensated Penning trap' very closely approxi-
mates the ideal Penning trap and in the past several years
such traps have demonstrated a remarkable ability to
produce highly precise measurements of certain funda-
mental quantities such as the electron’s g factor and the
electron-positron g-factor comparison,? the electron-
positron mass ratio,* the proton-electron mass ratio,* and
now the proton’s atomic mass.> In the future, the use of
compensated Penning traps for precision measurements
will increase dramatically as illustrated by proposals to
measure the j/p mass ratio,® the masses of nuclei far
from stability,” the *H-3He mass difference,® !° the fine
structure constant,® and high-Z Lamb shifts.!! Because
of the increasing role which this apparatus is having in
the field of high-precision metrology, it is imperative that
its limitations and potential be investigated for possible
future precision at the subpart per billion (ppb) level.
Along these lines, the interesting observation of beats in
the cyclotron resonance'’? may further increase the
device’s potential precision and put greater pressure upon
understanding its limitations.

To put this analysis into perspective, a brief description
of the experimental apparatus is in order. However, for a
more complete description, see earlier accounts.'®” 13
Figure 1 shows a simple three-electrode Penning trap
with two endcaps and a ring electrode (all hyperboloids
of revolution about the z axis), placed into a liquid-helium
environment at the center of a highly stable and uniform
magnetic field, B, obtained from a persistent field super-
conducting solenoid. Ions are generated by use of a
field-emission electrode placed in one endcap, oriented to
produce an ionizing electron beam along the z axis of
symmetry. A dc potential V|, is applied to the ring elec-
trode with respect to grounded endcaps to produce axial
confinement and the magnetic field overcomes the associ-
ated radial (antitrapping) electrostatic force. Once
confined, the ion’s axial motion at w, is driven like a har-
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FIG. 1. Overall schematic of experiment. A three-electrode
Penning trap is depicted at the center of a superconducting
solenoid, and submerged in a liquid-helium environment. The
grounded drive coil and signal-cap tuned circuit establish the
axial trapping field by virtue of a ring electrode held at potential
Vo. The feedback signal is generated by mixing the phase-
shifted drive synthesizer with the amplified ion signal to pro-
duce an error signal. This error signal is integrated and fed
back as a correction voltage to the ring bias circuitry, thereby
producing a frequency lock.
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monic oscillator using a very stable frequency synthesiz-
er. The current induced in the signal endcap is observed
as a voltage drop across a parallel LC circuit, tuned to
the ion’s axial frequency. This signal is amplified and
mixed with the original (appropriately phase shifted)
drive synthesizer to generate an error signal that can be
integrated and fed back to the ring electrode. In this
way, the ion’s axial resonance is kept “frequency locked”
to the drive oscillator. In the present ion work, the
correction voltage is used as a frequency shift signal
which represents the particle’s noncentered position via
the residual anharmonic terms in the basic trapping po-
tential.

The compensated Penning trap itself is a five-electrode
device that contains two additional ‘“‘guard” electrodes
placed between each endcap and the main ring electrode.
These allow us to compensate for the fourth-order term
in the trapping potential which is dominant by symmetry.
In addition, the “quadring” Penning trap!® contains an
additional modification in which the ring electrode is
split into four equal parts in order that the cyclotron
motion may be efficiently driven and cooled as well as to
allow for its direct detection. Figure 2 shows a cyclotron
resonance for a single C** ion which is indirectly ob-
served through the anharmonic shifts in the locked axial
frequency. Traces are shown in both directions, each
normally being preceded by strong axial sideband cool-
ing!* prior to excitation (though in general, very little en-
ergy is mixed into the magnetron, E X B drift motion). A
weak rf drive field near the cyclotron’s electric dipole res-
onance is swept through the resonant frequency and
detection arises when the cyclotron orbit increases, pro-
ducing a sharp signature in the correction voltage. Pre-
cision in this case is =3 parts in 10'°. However, the ob-
servation of beats, which can be clearly seen in Fig. 2
leading up to the sharp signature may offer us a means of
obtaining an order of magnitude increase in precision. 12
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FIG. 2. Cyclotron resonance for a single C** ion. Upon ab-
sorbing the rf drive, the excitation is made observable in the
correction signal through anharmonic terms in the trapping po-
tential. Note the time-varying frequency of the beat note as the
drive approaches resonance from above and below. Precision
here approaches 0.3 ppb.
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Therefore, the exact electrical environment of the
trapped ion needs to be investigated to be sure that there
are no systematic shifts which have not been taken into
account. As our first step in this analysis, we investigate
the effect that the trapped charge has on the electrostatic
trapping potential.

In the following sections, the normal mode frequencies
in a realistic Penning trap will be labeled according to the
notation @ (where @ =2#V) to explicitly indicate that pos-
sible shifts exist whose source is not the standard quadra-
tic trapping field. However, the conventional notation
for the observed axial, magnetron, and cyclotron frequen-
cies in an ideal Penning trap are w,, ®,,, and o, (respec-
tively) with the constraints that

1)
O =—, (1a)
2w,
0.=0,~o, , (1b)
where
eB
% e te)

is the trap-independent cyclotron frequency for a charge
g with mass m located in a uniform magnetic field, B,.
This last frequency is taken as a measure of the ion’s iner-
tial mass. In Sec. II we present experimental evidence for
the systematic dependency of the normal-mode frequen-
cies upon the number of charges n isolated within the
ideal Penning trap. In Sec. III we present the explana-
tion for the systematic, based on a spherical model with
image charge, and compare the results with what is ob-
served. Finally, in Sec. IV we discuss the impact of this
correction on precision mass measurements now and into
the future.

II. EXPERIMENTAL OBSERVATIONS

This particular number-dependency effect does not de-
pend on the anharmonic content of the potential distribu-
tion, but is intrinsic to the constraint of a charged parti-
cle surrounded entirely by conducting surfaces. Earlier,
less well-compensated quadring Penning traps'® have had
larger number dependencies and sometimes with the op-
posite sign. These early traps displayed this larger effect
primarily because of the intrinsic anharmonic nature of
their potential wells. Present ion traps, however, are at
least an order of magnitude more harmonic, and the ex-
planation for the present effect must be found elsewhere.

The importance of the effect lies with the increasing
use of multiply charged ions for precision spectroscopy.
The size of the absolute shift will be shown to grow as the
charge state increases. Initially, it was believed that a
single ion would not show this number dependency since
the most likely candidate was electrostatic space charge
shifts. However, the model presented here indicates that
even a single ion will have all of its normal mode frequen-
cies shifted by the induced surface charge. The model
therefore suggests that the proper approach is to extrapo-
late these frequencies to zero trapped ions, before deter-
mining the trap-independent cyclotron frequency, ..
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FIG. 3. Number dependency of various ions. The number of
trapped ions is determined from the width of the axial reso-
nance. In (a)-(c), the magnetron frequency shift is plotted vs the
number of '?C**, 2H™", and *He™ ions, respectively. In (d), the
cyclotron frequency shift is plotted vs the number of *He?*.
Also shown in each plot is a linear least-squares fit to the data.

Figures 3 and 4 show the measured number dependen-
cy for five examples of trapped ions (12C**, 2H™*, 3He™,
3He?™", and 'H"). The number n is obtained from the
well-resolved axial resonance linewidth Av, =nbv,, after
a single ion linewidth has been resolved for at least one
ion. Other single ion linewidths then scale as ¢?/m;,
(and tuned circuit Q, etc.) where g, and m, are the refer-
ence ion’s unit charge and mass, respectively. A well-
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FIG. 4. Number dependency for protons. The shifts in the
observed cyclotron frequency ¥,, the observed magnetron fre-
quency v,,, and the sum ¥, +7v,, are plotted vs the number of
ions. The sum is consistent with zero number dependency and
is approximately equal to the trap-independent cyclotron fre-
quency, v..

resolved axial resonance will show some noise reduction
due to the shorting out of the tuned circuit by the ion’s
effective series-equivalent Ic representation.!” Figures
3(a)-3(c) show the magnetron frequency shift plotted
versus the number of ions and Fig. 3(d) is a similar plot
for the cyclotron frequency shift. Figure 4 (for protons),
however, shows the dependency for both the observed
magnetron and cyclotron frequencies as well as their sum
which is consistent with no number dependency. One
can conclude from this that the number dependency man-
ifests itself as a phase slippage (or frequency shift) only in
the observed magnetron frequency and thus suggests an
electrostatic origin. This follows from o,=o0.+tw,,
which is obtained from the equation of motion for a
charged particle in an ideal Penning trap and the fact
that o, would not be constant for magnetic shifts. Table
I summarizes the present data for the different ions with
various masses and charge states. These results suggest
that, for both the magnetron and cyclotron resonances,
absolute shifts scale only with charge and the relative cy-
clotron shifts scale only with the ion’s mass (assuming the
trap constant and B, are held fixed). Thus, the average

TABLE I. Summary of number dependency for various ions. Values in parentheses denote the fitted

uncertainty.
Mass Charge Relative Abs. shift Rel. shift
Ion (amu) (units of e) mass/charge in (Hz/charge) (ppb/ion)
H* 1 1 1 0.0179(18) 0.23
H* 2 1 2 0.0185(14) 0.48
SHe* 3 1 3 0.0180(19) 0.72
*He?* 3 2 1.5 0.014(3) 0.55
12C4t 12 4 3 0.021(2) 3.33
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shift in v, is 0.018(3) Hz/charge (for our present trap lo-
cated in a 5 T magnetic field). This average reflects an
overall uncertainty of 10% in the individual number cali-
bration which is about twice the statistical uncertainty.
Because of the linearity and obvious electrostatic nature
of the shift, we conclude that image charges could be the
source of the systematic effect.

III. SPHERICAL MODEL WITH IMAGE CHARGE

The effect that image charges have upon the normal
modes of a trapped electron have been considered previ-
ously by Wineland and Dehmelt,!” by Brown, Helmer-
son, and Tan,!® and by Dehmelt.!® In the treatment by
Wineland and Dehmelt, the trap is replaced by a pair of
grounded parallel plates, separated by the characteristic
endcap-to-endcap distance. An infinite series of fictitious
charges are placed along the z axis of symmetry (outside
the parallel plate configuration) in order to meet the ap-
propriate boundary conditions. The treatment by Brown
et al. is much more rigorous whereby a longitudinal elec-
tric field is produced by the effective image charges in ad-
dition to a transverse component which they show is re-
sponsible for the microwave cavity modes seen by the cy-
clotron motion of an electron. The longitudinal com-
ponent is the gradient of a radiation-gauge scaler poten-
tial whose major effect is to alter the electrostatic binding
field generated by the standard quadrupole potential.
Both of these treatments correctly conclude that the al-
teration in electrostatic binding can be safely ignored for
the g-2 work;? however, as we show here, this is not the
case for ions in our 3 times smaller trap with an order of
magnitude more precisely measured cyclotron frequen-
cies. It is also worth noting that in the treatment by
Dehmelt, !° the axial shift can be correctly obtained in the
limit that w =w, for a spherical-wave model in which the
cavity-reflected wave reacts back on the source of the di-
pole radiation at frequency w inside a spherical cavity.

Since we wish only to get an estimate for the shifts to
be expected for trapped ions as well as their general
dependence on mass, charge, and geometry of the trap,
we will consider the trap replaced by a grounded con-
ducting spherical shell of radius a with the ion as a point
charge located inside (see Fig. 5). A sphere is a reason-
able approximation to the trap since the actual volume of
space within which the charge moves is typically very
small (less than 1073 of the total trap volume) and locat-
ed at the trap center. The charge Q =ng, located at po-
sition r relative to the center of the sphere induces an im-
age charge Q' at some radius r’ located beyond the inner
conducting surface. The potential due to this image
charge?® will satisfy the boundary condition that ®(a)=0
only if

2
Q'=—& and r,=a_2r . (2)
r r

The corresponding electric field due to the point image

charge at the trapped ion’s position is according to

Coulomb’s law:
T

image

Qar 3)

Ir'—r (a®—r2? "

F—Ro=0.158(1) cm

FIG. 5. Scale drawing of trap electrodes. The effective
sphere radius a =R, is shown for comparison with the actual
electrodes. Also, the break in endcap and ring electrodes
(where contours deviate from hyperboloids) are at 6=47° and
0=63°, respectively. The point of the guard electrode is at
6=56°, but the exact guard contour is not critical in determin-
ing the effective image-charge sphere because of the 1/r* depen-
dence.

This image force can now be superimposed onto the usual
electrostatic trapping fields (in terms of the same spheri-
cal coordinate, r)

Etrap:—v 4d2

V,
—O—(Szz-—rz)] , )

where ¥V, is now the potential applied to the ring elec-
trode with endcaps grounded, 2d>=Z3+1R3}, and 2Z,
and 2R, are minimum endcap separation and ring elec-
trode diameter, respectively (see Fig. 5 for dimensions).
By decomposition into cylindrical coordinates z,p and
with r <<a, we obtain the following total electric fields at
the site of the trapped ion(s):

Yo_ 0

Vo +g
d* a?

E=- 20t

z, E =

o p - (5

The axial equation of motion, m Z=gqE, for a particle
of mass m, and charge g, (or equivalently, the center of
mass) yields the shifted axial frequency @, , given by

-2 _ qan _
CE " A, 6)

with A, =ng?}/m,a> for n ions with charge ¢, and the
use of “V,” allows for the possibility that we may change
the ring voltage when n is changed. This axial shift has
the same functional form obtained by the earlier treat-
ments.!”"!° However, at this point, we wish only to ana-
lyze the effect that this perturbation has on the other two
normal modes under the actual experimental conditions
in which w, is frequency locked. Thus, we now specify
that ¥, =V,+nq,d?/a’ which produces the results that
B,, =, for all n. The radial equation of motion can
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now be written in the form

-, xp= | TV 44
—2
O3, 3A,
= [—2" 4 ) 7
2 2 |P @

where @, is given by Eq. (1c). The solution for the result-
ing compound motion in the xy plane is represented by
epicycles with shifted frequencies given by

20, =0, (0} =282, —6A,)"%. (8)

From this solution, it follows that
2 3A
+ -

z,n n
2 2

where we identify w . as the observed (fast) cyclotron fre-
quency @,, and w_ as the observed (slow) magnetron ro-
tation frequency, @,,. Thus, these frequencies become

—2
@;, i 34,
mn ’

2, , 2, ,

o_tow,~ 0, 0i0_= (9)

(10)

For our experimental conditions, these frequencies be-
come

@, ,=o,p=const ,
3A
—_— p— n
wm,n:a)m,0+ — ’ (11)
20, ,
p— — 3An
WD p =W 0™ T2 »
26, ,

where @, o and & represent the magnetron and cyclo-
tron frequencies, respectively, in the limit that n —0.

For completeness, we note that the familiar quadrature
equation?!

?=al+ol+al, , (12)

which has been shown to be invariant under the dom-
inant electrostatic perturbations of trap angle with the
magnetic field and trap ellipticity, can be modified to in-
clude the perturbations due to image charge if A, is
known for the trap. This is done by adding one simple
term and is derived algebraically by squaring
o, , =w,—0,, , and using Eq. (11). The final result is

c,n

2 =
0, =D

2 ek, +o,, 30, . (13)

n

This is equivalent to extrapolating @.,—®.o and
&,, ,—0,, o prior to using the quadrature Eq. (12) with
o, frequency locked.

For comparison with the observed number dependency
summarized in Table I we rewrite the magnetron (or neg-
ative cyclotron) shift as an absolute frequency 8, given
approximately by 3A, /o,

3q,c

5,= 3
2a°B,

n

(14)
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First, we note that this frequency depends linearly on the
total trapped charge nq; but not mass. It also scales in-
versely as the cube of the characteristic dimension of the
trap. In addition, the relative shift in the observed cyclo-
tron frequency scales as the total trapped mass nm, and
is independent of charge:

5,

.

3m,c?

2a’B2

n, (15)

which is as observed. Note that the electrostatic well
depth does not enter and therefore reductions in ¥V to
reduce w,, (which usually works for electrostatic trap
perturbations) will not help. Upon comparing 8, [from
Eq. (15) for n =1] with our experimental shift (average
from Table I, fifth column), the radius of the appropriate
sphere is 0.156 cm or =R,. This is illustrated in Fig. 5
where the sphere is superimposed into the trapping
volume.

To see if this model is justified for ions near the trap
center, we take a simple average of the 1/a* dependence
over solid angle in order to deduce an average spherical
radius a*, which best approximates the real trapping
contours:

dQ dQ dQ
= _ + -
fsphere (a* )3 fring r 3 fguard r 3
dQ
+ —_— . 16
fendcap r‘3 ( )

In this equation, the ring electrode is defined by
p’=R}+2z> whereas the endcap is defined by
p?=2z2—2Z3. The integral over the guard electrode is
included for completeness, but can be safely ignored be-
cause of the 1/r3 dependence. Actually, it reduces the
final result by =~1.5%, but this is compensated for by ig-
noring the four gaps that exist in the quadring (whose
effect is to increase the result by =1.5%). Upon com-
puting the integrals and wusing the relationship
Z,=0.72R, for our trap, we find that the effective sphere
radius is

a*=1.12R, , (17)

which can be compared with our measured number deter-
mined from data in Table I (R;=0.158 cm):

a=0.99(6)R,, . (18)

This is quite reasonable agreement considering the sim-
plicity of the average.

Finally, a numerical relaxation program has been used
to calculate the fields due to the surface charge induced
on the surrounding electrodes by the trapped ion. In par-
ticular, this analysis can determine the fractional shift in
the axial frequency due to these surface charges. From
Eq. (6), this fractional frequency shift is given by

dw, nq,d?

= _ (19)
W, 203V0

for the spherical model. For the results listed in Table I
for protons, this shift becomes —14(2) ppb per trapped
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proton. The numerical relaxation program yields a pre-
diction of —15 ppb per proton for this same fractional
shift. Thus, this agreement along with the results of the
simple average shown in Eq. (16) indicate that we do
indeed understand the number dependency of the cyclo-
tron and magnetron resonances and can therefore use the
image charge model as a guide to minimize and/ or elimi-
nate this systematic effect.

IV. CONCLUSIONS

The correction shown in Eq. (14) makes it graphically
clear that, contrary to previous beliefs, this systematic ex-
ists even for a single trapped ion. The difference between
extrapolating to zero instead of one ion represents an ad-
ditional correction of 0.24 ppb for protons, 0.47 ppb for
ZH™, 0.73 ppb for *H ™, and 2.8 ppb for '*C** (our usual
calibration ion). Since our cyclotron linewidths are typi-
cally ~0.3 ppb and we always attempt to use small
clouds of less than 5 ions, calibrated against a single car-
bon ion, correcting for this systematic to 10% will elimi-
nate it as a major source of error at the 1-eV level of ac-
curacy.

As a further matter of interest, it should be noted that
because the electron’s cyclotron frequency is 3 orders of
magnitude larger than that of a proton, this systematic
will not show up at the current level of precision in the
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g-2 experiments.? Unfortunately, given that the relative
systematic for cyclotron frequency measurements is
linear in the mass of a single ion, the present effort® on
N7+ or 'N7" will show a 14 to 15 times larger shift
than protons in the same trap. In fact, if a single 23%U%? ™"
ion were being investigated,!! the relative shift would be
over 200 times larger. However, from Eq. (15), it is clear
that this effect can be greatly reduced by increasing the
trap’s size. For the 2**U%2" experiment, the relative shift
could be made the same as for a single proton in the
present trap if we scaled it up by a factor of 6. However,
a correction could easily be applied again at the 10% lev-
el, suggesting that trap size need only be scaled up by
three to achieve relative precision of 2X107'° in a
238U%2% mass measurement. The loss in coupling to the
ion in a larger trap is easily compensated for by the in-
crease in charge state since absolute axial linewidths scale
as gi/md>.
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