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An entire family of mass spectrometers relies on the excitation and subsequent detection of the cyclo-
tron mode in a trapped ion cloud. The observed long-term coherence of this mode is critical to the suc-
cess of these instruments. This paper analyzes the dynamics of the charge cloud after excitation and
finds that they are mathematically equivalent to the dynamics of the cloud before excitation. A vortex-
like rotation of the cloud prevents expansion under many conditions depending on the trap geometry
and the properties of the cloud. The stability of an excited ion cloud with velocity dispersion and ap-
plied shear is analyzed and numerical predictions of relevance for ion cyclotron mass spectroscopy are

made.

PACS number(s): 52.25.Wz, 35.10.Bg, 82.80.Ms, 07.75.+h

I. INTRODUCTION

Ion cyclotron resonance (ICR) mass spectrometers
have become the preferred instrument for a wide variety
of mass measurement applications [1]. These instruments
routinely achieve a precision of one part in 10’ and can
simultaneously weigh a large number of different species
[2-4]. At the heart of these instruments is a Penning
trap which utilizes an electric potential well and an axial
magnetic field to confine ions. Precise measurements rely
on excitation of the cyclotron mode in an ion cloud, and
subsequent detection of that mode in such a way that the
cloud remains intact for as long as possible. The excita-
tion process has been extensively studied [5-8], and ad-
vanced techniques have been developed which permit the
excitation of the cloud to a large cyclotron radius with
minimal disruption. Once excited, this mode may require
more than 10°® periods to decay. This exceptionally long
coherence time implies that some physical process
operates to prevent the more rapid loss of the cloud’s
structure. This paper analyzes the excited cloud’s dy-
namics, and proposes that it rotates in a way which pro-
vides stabilization and therefore directly results in long-
term coherence.

The extraordinary stability of charge clouds in a sym-
metric trap has traditionally been explained as a conse-
quence of angular momentum conservation [9]. When
the trap is asymmetric or the cloud is off-center, however,
an energy-based argument is required to explain the
cloud’s long-lived stability [10,11]. Assuming that a
cloud contains a sufficient number of ions that collective
effects are important, its kinetic energy prior to excitation
is small compared to its self-electrostatic potential energy
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where r;, v;, m;, and g; are the radius, velocity, mass, and
charge of the ith ion, and ¢(r;) is the potential at r;. It
can be shown that the cloud’s self-electrostatic potential
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energy is maximal with respect to changes in the cloud’s
size or shape [10]. Since the cloud’s dynamics must con-
serve electrostatic energy, it is energetically impossible
for the cloud to expand or distort [10]. It is not initially
clear what becomes of this stability principle for an excit-
ed cloud. The kinetic energy from the excited ion cloud’s
coherent motion is generally much larger than the
cloud’s self-electrostatic potential energy. It is therefore
possible for the cloud to expand or distort as coherent
kinetic energy and electrostatic energy are exchanged.
As a result, there appears to be no stability constraint on
the cloud dynamics.

How does the excited charge cloud manage to retain a
compact shape for detection times greater than 10° cyclo-
tron periods? There are certainly effects which act to tear
the cloud apart on more rapid time scales. Some ions
within the cloud may follow trajectories which are dis-
tinct from the trajectories of other ions in the cloud [12].
For example, ions with different axial energies may ex-
perience different average radial electric fields. If the
motion of any particle is sufficiently different, it should
rapidly separate and contribute to the cloud’s loss of
coherence. In addition, the effective gyration frequency
is usually a slight function of the radial distance to the
trap center. This dependence is equivalent to a shear
which may distort or even completely destroy the cloud’s
structure.

An excited charge cloud acquires resistance to these
destructive effects as a result of a rotational motion. In
the frame of reference which moves with the cloud’s cy-
clotron motion, the cloud undergoes an additional rota-
tion about its own center. The motion is due to the
cloud’s own electric field, and is therefore distinct from
the cyclotron and magnetron motions. We discuss this
motion below, and show how it leads to improved mode
coherence in the presence of destructive effects of limited
strength. This rotation is most important for high densi-
ty and high mass charge clouds. This helps explain why
cloud compression is critical for successful mass measure-
ment [13], and why very long-lasting, coherent cyclotron
modes are observed for high mass ions [14,15].
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II. DYNAMICS OF AN ION CLOUD
IN THE CYCLOTRON MODE

A review of the dynamics of an unexcited charge cloud
confined within a Penning trap is needed [16]. Figure 1
shows a side view of a typical trap geometry. A uniform,
axial magnetic field B and bias voltages applied to the
ends of the trap combine to provide effective confinement
of an ion cloud. An ion’s axial, oscillatory motion due to
the trap potential well does not affect its motion in the
plane perpendicular to the magnetic field to lowest order.
The two dominant forces which govern the perpendicular
motion of an ion are the electric force from the cloud’s
own space charge and a magnetic force from the external-
ly imposed magnetic field. As a result of these two
forces, ions undergo EXB drift in the azimuthal direc-
tion around the cloud. Many physically interesting ion
clouds have a shape that is approximately spheroidal,
where both of the semiaxes in the plane perpendicular to
the trap axis have lengths p.. The cloud may have an ar-
bitrary axial aspect ratio a=z,/p., where 2z, is the ex-
tent of the cloud in the axial direction. The space charge
from a cloud with this shape produces an electric field
with the particularly simple form [17]
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where p is the radial coordinate measuring distance from
the cloud center, w?=(nq?/€ym) is the plasma frequency
squared, and a (a) is a coefficient which accounts for the
cloud’s elongation. Since the electric field is proportional
to p, E XB drift causes the cloud to rotate as a rigid rotor
with a frequency

— (3)

where Q=gB/m is the cyclotron frequency. The
coefficient a (a) is obtained from
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FIG. 1. Side view of a typical trap geometry.
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second kind. Note that Eq. (4) has two different forms
valid when a is greater and less than one [17,18]. Al-
though Eqgs. (2)-(4) cannot be applied to an ion cloud
with a cross section that is far from circular, they provide
a useful approximate description of the motion of clouds
with shapes that are close to the assumed form.

A second basic motion in an ion cloud is bulk, coherent
cyclotron motion of the entire cloud about some point
other than the cloud center. The exact frequency at
which this cyclotron gyration occurs is o, =Q—wp,
where wj, is the drift frequency that results from the trap
and image electric fields [19,20]. This drift frequency is
known alternately as the magnetron or diocotron fre-
quency depending on whether the trap or image fields are
of dominant importance [14,15,21,22]. If the rotational
center of the cyclotron motion is any point other than the
trap center, this point will also drift around the center
with a frequency w;. For the purposes of this paper, it is
acceptable to ignore all forms of this magnetron motion
so that the effective cyclotron frequency w, is approxi-
mated as (). The relaxation of this assumption might al-
ter the details of the system’s dynamics, but will not in-
validate the basic physical effects described below (pro-
vided |op| << |Q)).

Cyclotron motion can be driven to any amplitude de-
pending on the strength and duration of the external elec-
tric fields used for excitation. Although this mode has
been observed in electron clouds [19,20], it is much more
commonly used with ion clouds for mass spectrometry.
It does not matter that the cloud undergoes a slow EXB
rotation about its own center; the linearity of the Lorentz
force equation implies that the two motions must coexist
in a single cloud. Further insight can be gained by view-
ing the dynamics from a frame of reference which gyrates
with the cloud about the trap center but does not rotate.
In this frame, the magnetic and inertial forces involved in
the cyclotron gyration are absent. The remaining electric
and magnetic forces cause the cloud to rotate in a manner
identical to that of the unexcited cloud.

Figure 2 illustrates the cloud’s motion before and after

FIG. 2. Axial view of cloud motion geometry. The unexcited
cloud is shown at the trap center and rotates at a frequency of
w,. The excited cloud rotates about its own center at the same
frequency while simultaneously undergoing cyclotron motion
about the trap center.
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the excitation of a large-amplitude cyclotron mode. For
a magnetic field as shown, an unexcited cloud of positive-
ly charged ions will rotate at @,. The excited cloud has
two collective motions: (1) a coherent gyration about the
trap axis at ), and (2) a rotation at w, about its own cen-
tral axis. Although the rotation may be much slower than
the cyclotron gyration, it ensures that the cloud does not
always keep the same orientation within the trap. The ra-
tio of the excited cloud’s rotation and gyration frequen-
cies is

— . (5)

Disregarding factors of order 1, this ratio is equal to the
factor by which the charge cloud is below its Brillouin
confinement limit, 0?/2Q%=1 [23].

The above analysis predicts more than the rotational
motion of the cloud. Any and all dynamics of the excited
cloud in the frame of reference that gyrates with the cy-
clotron motion are identical to the dynamics of an unex-
cited cloud. Any analytical tools used to understand the
motion of unexcited ion clouds are also applicable to ex-
cited clouds. For example, if the cloud has a constant
density within an elliptical region, there is an analogy
which relates its behavior to the behavior of a vortex in a
two-dimensional, inviscid fluid [24-26]. This analogy
uses the fact that if the charge density and electrical po-
tential of the cloud are identified with the vorticity and
stream function of the fluid, the equations governing
their dynamics are identical. This powerful analogy may
help in the solution of more complex problems such as
the interaction of multiple-ion clouds of different mass
particles. Section III analyzes the effect of an externally
imposed shear on the long-term coherence of an excited
charge cloud with the help of the fluid analogy.

III. CLOUD STABILIZATION

The cloud’s rotation is an important physical process
which may prevent the rapid expansion and consequent
loss of ICR signal. Unlike an unexcited charge cloud, the
excited cloud may expand or dramatically distort while
conserving total energy. Within certain limits, which we
set forth below, the rotational motion stabilizes the cloud.

There are two categories of effects which can lead to
cloud expansion. The first category of effects causes
different particles within the cloud to have different
effective gyration frequencies. One such effect would be
the presence of particles of two or more different masses.
The second category of effects exerts a shear on the
charge cloud. These effects usually arise from imperfec-
tions in the trap design which cause the cloud’s gyration
frequency to depend slightly on position.

A. Individual particle velocities

In general, anything which differentiates the ions
within an excited charge cloud may give each of them an
individual velocity relative to the cloud as a whole. For
example, the ions may have a variety of masses, charge
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states, or axial energies. For this analysis, the effective
gyration frequency of one ion in the cloud is assumed to
differ by 8} from all of the other ions in the cloud. If §Q
is 0, this ion executes a circular orbit around the center of
the cloud as a result of the cloud’s rotation. Clearly, if
8Q is sufficiently large, then the ion escapes from the
cloud’s influence and is effectively lost. If a number of
ions are lost in this manner, the cloud quickly expands
and mode coherence lasts only for a short time.

An estimate for the individual velocity needed to es-
cape from the cloud is obtained by equating the cloud ro-
tation time to the time an ion requires to traverse the di-
ameter of the cloud at its individual velocity

2 _ 2P
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(6)

where p, is the cloud’s radius and r, is its gyration ra-
dius. This relation can be expressed as v; =v, /m, where
v; is the individual velocity of an ion in the cloud, and v,
is the velocity of an ion at the edge of the cloud due to
the cloud’s rotation.

An improved, secondary estimate for the ion velocities
that lead to rapid cloud expansion and loss of coherence
is obtained by direct computation of ion trajectories.
Figure 3 shows the geometry for this calculation in the
frame of reference that moves with the cloud’s gyration.
In this frame of reference, the ion cloud’s center is sta-
tionary. The x and y coordinates measure distance in the
plane perpendicular to the trap axis, and X is the direc-
tion of the ion’s individual motion. The cloud as a whole
rotates at a frequency w,, and an ion at position 4 is as-
sumed to have an independent velocity v, =r.8Q. Posi-
tion A is the location at which a particle is most likely to
escape since it begins at the edge of the cloud, and its in-
dividual velocity (assumed to be toward the right) moves
it radially outward for a maximum amount of time. The
cloud is assumed to be initially circular and to have a
constant density within its spheroidal volume. The
motion of ions is studied only in two dimensions, and the
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FIG. 3. Trajectories of individual ions in the frame rotating
with the cloud at Q for v; /v, =0.10, 0.28, and 0.45. The outer
edge of the circular ion cloud is represented by the elliptical
dotted line in these coordinates. The vortex rotates clockwise at
a frequency of w, in this frame of reference. All positional
coordinates are normalized to the cloud’s radius. Each trajecto-
ry starts at position A.
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cloud’s radial electric field is assumed to fall off as
E,(p)=p./p for positions outside the cloud’s radius, p..
These approximations should be reasonable for the region
near the charge cloud. Particles without escape velocity
are unlikely to leave this region.

Figure 3 shows the trajectories of an ion initially at po-
sition A for several different ratios of its individual veloc-
ity to its rotational velocity. A particle executes a closed
orbit when

v; <0.280, , ¥))

where v,=w_p,. is the rotational flow velocity at the
cloud’s radial edge. For larger values of this ratio, how-
ever, the particle escapes from the cloud. For ions at oth-
er initial positions, the coefficient in Eq. (7) is larger,
reaching a maximum of 0.6 for an ion that begins at the
cloud center. Cloud coherence, however, is determined
by Eq. (7) because whenever ions at the edge of the cloud
are lost, it becomes easier for the interior ions to escape.
Whenever substantial numbers of ions fail to satisfy Eqgs.
(7), the cloud “evaporates” in a time which is of the same
order as the rotation time. If, however, the vast majority
of cloud ions satisfy Eq. (7), then we conclude that the
cloud is stable and coherence is long-lived. If a large
number of ions barely satisfy the stability condition, they
undergo highly elliptical orbits, and the ultimate fate of
the cloud is unclear.

B. Imposed shear

Possible sources of shear for an ion cloud that under-
goes cyclotron motion include anything which results in a
dependence of the exact gyration frequency on the posi-
tion within the trap. If the cloud is not too close to the
trap center, an imposed shear flow with vorticity s can be
written approximately as

v, =—sy, (8)
v,=0, )

where the frame of reference is chosen so that v, and v,
are ion velocities along and perpendicular to the shear
direction, respectively. Possible sources of shear are
magnetic-field inhomogeneities [27], image charge effects
[18,22,28], passive space charge at the trap center, and
nonharmonic or asymmetric components of the trap’s
electrical potential well [29,30]. Inhomogeneities in the
rf electric field may also exert a shear on the ion cloud
during excitation. Two points at opposite ends of a cloud
diameter along the y axis have a relative velocity of 2sp..
Equating this relative velocity with the rotational veloci-
ty of the cloud’s edge allows us to derive a crude estimate
of the shear required to rapidly destroy cloud coherence

Is] _ 1
2a)p e (10)

where 2w,, is the vorticity of the cloud’s rotational flow.

We utilize the fluid analogy for an improved analysis of
the effect of shear on the ion cloud. This analysis is in-
tended only to reveal the general properties of an ion

cloud undergoing shear and rotation, and not to provide

4365

a highly accurate stability limit. According to the fluid
analogy, the uniform density charge cloud can be viewed
as a rigidly rotating vortex in a two-dimensional, inviscid
fluid. Kida [31] studied the time-dependent behavior of a
uniform vortex with an elliptical shape and found the
magnitude of shear beyond which the vortex is no longer
stable. If the shear is too strong, then the vortex is quick-
ly stretched into a thin line and effectively destroyed. If,
however, the shear is not too strong, the cloud is stable
and cannot be torn apart even after a very long time. Al-
though the fluid analogy for a three-dimensional cloud is
exact only when the cloud has a circular cross section in
two dimensions, stable clouds tend to remain roughly cir-
cular, and therefore the fluid analogy is approximately
valid.

The necessary condition for long-term stability found
by Kida is

= >2v2-3~—0.17. (11)
20,

Although a vortex may be stable, its two-dimensional as-
pect ratio A oscillates on a time scale which normally is
comparable to the vortex rotation frequency. We studied
these oscillations for an initially circular (A=1) vortex by
numerical integration of Kida’s equations for the evolu-
tion. Figure 4 shows the minimum aspect ratio reached
during the course of the oscillations as a function of shear
strength. The numerically observed limit of long-term
stability is approximately s /2w,> —0.148, which is close
to the absolute limit in Eq. (11). For s/2w,> 1.0, howev-
er, the vortex reaches a sufficiently elongated state that
the fluid analogy probably ceases to be valid, and the ion
cloud is at risk of destruction. Certainly for s /20,>2.0,
the cloud becomes so elongated that Eqgs. (2)—(4) cease to
apply, and the cloud’s rotational motion is greatly
slowed. The cloud in this case is stretched without limit
and destroyed. Notice that an ion cloud is more easily
destabilized by a shear with adverse vorticity (s <0).
There is a range of shear strengths for which destabiliza-
tion occurs only if the shear is opposed to the vortex ro-
tation.
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FIG. 4. Minimum aspect ratio A vs shear strength for a two-
dimensional charge cloud. The shear is quantified by the ratio
of the vorticity of the shear flow to the vorticity of the cloud’s
rotational flow. The cloud’s shape is circular for A=1, and be-
comes increasingly elliptical as A goes toward zero.
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IV. IMPLICATIONS FOR MASS SPECTROSCOPY

Equations (3), (7), and (11) determine the stability of
any given excited charge cloud once the trap geometry
and its imperfections are completely known. The pri-
mary result is that an ion cloud is more stable if its rota-
tion rate increases or the magnitude of shear and indivi-
dual particle velocities decrease. Because the magnitudes
of the destructive effects are often proportional to the cy-
clotron frequency, the two stability conditions, Eqgs. (7)
and (11), can be expressed as wp/ﬂ> €, where e<<1
represents the strength of destructive effects and w,/Q is
given by Eq. (5). This analysis predicts that cloud stabil-
ity is reduced as the magnetic-field strength is increased.
Experimentally, clouds may actually be more stable at
higher magnetic fields if they can be formed more com-
pactly.

An interesting conclusion that can be drawn from our
stability analysis involves mass and charge dependence.
The cloud’s slow EXB rotation frequency o, depends
linearly on charge but is nearly independent of mass. The
cyclotron frequency, of course, depends on the ion’s
charge-to-mass ratio. Equation (4) therefore predicts that
cloud stability increases with mass. Experimental obser-
vations have shown that the cyclotron mode in a high
mass ion cloud can persist for a long time [14,15]. Figure
5 shows the stability ratio w,/Q for a typical ion cloud as
a function of the ion’s mass. For numerical examples
from here on, we assume that a typical ion cloud with 10*
ions is spherical and has a radius p, of 1 mm, and is lo-
cated at r,=1.0 cm inside a trap with a magnetic field of
7T.

Since the rotation frequency depends linearly on the
density of ions within the cloud, high-density clouds
should be inherently more stable. Experimental results
have indicated that longer transients and improved mass
measurements are obtained when the cloud is as compact
as possible [5,13]. If compaction occurs in such a way
that shape and total charge are preserved, then the

mp/Q
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FIG. 5. Ratio of the cloud rotation frequency w, to the cyclo-
tron frequency ) vs ion mass for a typical ion cloud. High mass
ion clouds are substantially more stable. A cloud with the as-
sumed parameters is below the Brillouin limit when m <2X10°
u. Clouds consisting of high-mass ions can only be formed at
lower ion density.
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cloud’s stability improves as the inverse cube of its size.
Axial compaction can also improve stability. Figure 6
shows the rotation frequency as a function of the axial
elongation a of a cloud of constant charge. Note that as
the cloud becomes infinitely oblate (a¢=0), the rotation
frequency reaches a limiting value of 37 /4 times the rota-
tion frequency of a spherical cloud (a=1). Concentra-
tion of the cloud’s space charge has other beneficial
effects for mass spectrometry. For example, a reduction
of the cloud’s physical size generally reduces the cloud’s
initial velocity dispersion and reduces the dispersion
caused by inhomogeneous electric fields during excita-
tion.

A cloud is most vulnerable to shear along a direction
perpendicular to the trap axis, which we designate as the
x axis. Although there may be radial shear within the
trap, the cloud rotates at w,~{) in the frame which
gyrates about the trap center with the cyclotron motion.
This rapid rotation provides stability against radial shear.
The shear strength can be written s =r,8Q /p., where 5Q
is the variation of the effective gyration frequency across
the radius of the charge cloud. Using Eq. (11), the
cloud’s stability condition is then written approximately
as

1Y)

Q

Te

Pec

_P>3

12)
Q (12)

Assuming that m =1000 u and g =5e, where e is the
charge on the electron, Eq. (5) yields the value
w,/2=0.015. The maximum tolerable variation in the
cyclotron frequency across the cloud’s radius is therefore
80=5.1X10"* Q. The magnetic-field inhomogeneity
over the entire volume of a typical ICR cell corresponds
to roughly Q=103 Q [27]. Most sources of extraneous
electric fields in the cell, such as space charge, image
charge, and nonharmonic components of the trapping
field, also do not produce a shear of this magnitude.
Shear is thus quite unable to affect the coherence of the
cyclotron mode in this particular ion cloud.

The stability limit arising from the individual motion is
given by Eq. (7). If a cloud consists of two species with

Spherical

w,/w (sphere)

o
[63)
T

Elongation, o

FIG. 6. Rotation frequency of the ion cloud vs axial cloud
elongation. The total charge in the cloud is assumed to be con-
stant. The angular rotation frequency is normalized to the fre-
quency of a spherical cloud. The cloud is a sphere for =1, an
axially flattened disk for =0, and a cylinder for a= .
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masses that differ by the small quantity 8m, then the indi-
vidual velocity of the ions is v;=Qr,8m/m. The
coherent flow velocity at the edge of the vortex is
v.=wyp.. The stability limit in Eq. (7) therefore be-
comes

dm | |7

Pec

(0]
—-£536

Q . (13)

For the typical ion cloud described above, the cloud sta-
bility is lost when the mass difference exceeds
8m/m=4.3X10"* Since this condition is nearly al-
ways satisfied, an ion cloud composed of multiple species
should immediately break up into separate clouds each
consisting of a single species. If this cloud is to remain
stable, there must also be a limit on the possible variation
of the axial “bounce” frequencies @, of the ions. An ion
with an axial frequency that differs by 8w, from the
remainder of the cloud will have a cyclotron frequency
which differs by

0,00,

50 q (14)
Equation (14) is derived using the relation Q*=w2+0?
[18], where . is the effective gyration frequency of the
cloud inside the trap, and o, is replaced with  to lowest
order. The stability limit for this case can therefore be
expressed as

@, r. 0,00,
—=>3.6 |— 3 , (15)
Q Pe Q
or equivalently as
@, o )
<0.28 |2 0 (16)
w, re W,

With the typical cloud parameters assumed above, and a
trap with a primarily harmonic potential well that is 5 cm
long and 1 V deep, the angular axial oscillation frequency
is approximately 1.75X10* s™!. The stability limit in
this case is 8w, /@, <0.63. This typical cloud is therefore
stable in any trap potential well that is sufficiently har-
monic that §w, <<w,.

The particular ion cloud used above for a numerical
example is completely stable. The cyclotron mode in
such a cloud would remain coherent until effects not con-
sidered in this paper cause a gradual loss of coherence.
Examples of such effects are transport arising from col-
lisions with neutral molecules or the loss of ions out of
the axial ends of the trap. Additionally, the interaction
between different clouds within the same trap may cause
expansion and loss of coherence.

V. THE FAST ROTATIONAL MODE

As a final topic we discuss the stability of an ion cloud
that undergoes fast rotational motion about its own
center. In addition to the slow, EXB rotational mode
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described by Eq. (3), there is a fast mode in which every
ion undergoes cyclotronlike motion about the cloud
center at an angular frequency of Q —w,, [23]. The down-
shifting of the cyclotron frequency is understood by con-
sidering the frame of reference which rotates about the
cloud center at the cyclotron frequency. In this frame,
the cyclotron motion vanishes, and the cloud has the
same electric and magnetic forces which cause EXB ro-
tation in the slow mode. However, this frame’s rotation
causes a new Coriolis force which is twice as strong as
the magnetic force but opposite in direction. As a result,
the ions rotate about the cloud center under the com-
bined influence of the Coriolis and magnetic forces at the
frequency w,, but in the opposite direction from the slow
mode rotation. Which rotational mode a given ion cloud
is in depends on its experimental history [32]. Experi-
mental studies have confirmed the expected downshifting
of the fast rotation frequency using an electron beam
which enters the fast mode when it passes through a mag-
netic cusp (a point where the field direction reverses) [33].
Generally, any process which adds sufficient angular
momentum to the ion cloud leaves it in the fast mode.
Like the slow rotational mode, the fast rotational mode
can be combined with bulk cyclotron gyration of the
cloud about the trap center. The frame of reference that
is most useful for analyzing these combined motions is
the frame which rotates about the trap center at the cy-
clotron gyration frequency ). Note that in this case the
frame rotates as it gyrates. This frame follows the cloud’s
gyration and most of its self-rotation. The cloud is sta-
tionary in this frame except for a slow counter-rotation at
@, which results from the downshifting of the fast rota-
tional frequency.

The destabilizing effect of individual ion motions on
this cloud is the same as described above because nothing
is different except the direction of the cloud’s rotation.
The type of shear which most affects this cloud’s stability,
however, is radial shear. Image charge, passive space
charge at the trap center, and trap field errors all contrib-
ute directly to radial shear. It is likely, therefore, that the
coherence of the cyclotron mode would be substantially
less long lived for a cloud in the fast rotational mode.

VI. CONCLUSION

The dynamics of an excited charge cloud are formally
identical to the dynamics of an unexcited charge cloud.
A powerful analogy therefore relates the excited cloud’s
behavior to that of a two-dimensional vortex in an invis-
cid fluid. An important feature of this dynamics is the
rotation of the charge cloud in the frame of reference that
moves with the cyclotron motion. This rotation may be
responsible for the experimentally observed long-term
coherence of the cyclotron mode. Both individual parti-
cle effects and externally imposed shear destabilize the
cloud only when strong enough to overcome the effect of
the cloud’s rotation.

Although the numerical limits derived in this paper are
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intended to be only approximate, this treatment should
serve as a guide for understanding long-term coherence.
It is now possible to analyze the relative stability of
different types of charge clouds in various trap
geometries. Stability is optimized for cool, compact,
high-density clouds and ions with a high mass. An ion
cloud is stable only when the masses of the cloud’s ions
are sufficiently close in value. Future experiments may
exploit this understanding of the cyclotron mode to deli-
berately enhance coherence and thereby improve the ac-
curacy and resolution of mass measurements.
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