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Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance

(FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR

experiments. In order to describe the coalescence phenomenon we would like to propose a new

theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field

and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of

their averaged driftmotion in crossedmagnetic and electric fields. The ion clouds are considered to be

of constant size and their motion is studied in two dimensions. The theory deals with the first-order

approximation of the equations of motion in relation to dm/m, where dm is the mass difference and

m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential,

whichmakes it possible to analyze finite-size ion clouds of any shape. The final analytical expression

for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An

algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical

number of ions for the peak coalescence to take place is shown to depend quadratically on the

magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to

the ion masses. Copyright # 2009 John Wiley & Sons, Ltd.
The most accurate mass measurements for large biological

and polymeric molecules are provided by Fourier transform

ion cyclotron resonance mass spectrometry(FTICRMS).1,2 In

this technique ion masses are measured by exciting

synchronous cyclotron motion of ions in high magnetic

fields and measuring the frequencies of this motion which

are connected to masses by the expression: mi/zi¼B/Vi,

where mi is the ion mass, zi the ion charge, Vi the cyclotron

frequency, and B the strength of the magnetic field.3 In high-

throughput experiments such as the analysis of complexmix-

tures like oil or amixture of proteins in biological samples we

deal with very high dynamic ranges of concentrations for

individual components in the mixture, which sometimes

exceed six orders of magnitude. If the FTICR signal detection

limit corresponds to approximately 50 charges, at the high

boundary of the dynamic range we are dealing with about 50

million charges. For this reason, ion–ion interactions play an

essential role in this type of mass spectrometry experiments.

At high numbers of ions in the FTICR cell, non-neutral

plasma effects take place.4 The best known effect caused by

ion–ion interactions is the so-called peak coalescence.5 Peak

coalescence in the simplest form manifests itself by the

merging of two adjacent peaks in the FTICR spectrum into

one when the number of ions in the cell exceeds some critical

number, which depends on the cell geometry, ion masses,
ndence to: E. N. Nikolaev, Institute for Energy Problems
cal Physics RAS, Leninsky prosp. 38, bld. 2, Moscow
ussia.
ikolaev@chph.ras.ru
magnetic field intensity and other experimental parameters.

This phenomenon influences the performance of the mass

spectrometer, making it impossible to resolve close peaks

when there are large numbers of ions in the FTICR cell and

thus decreasing the effective dynamic range of the mass

spectrometer. In this work we have developed a theory to

describe the coalescence phenomenon by analytically

investigating ion cloud motion in a uniform magnetic field

for the case of close mass-to-charge ratios of ions in the

interacting clouds.

Previous attempts to investigate this problem theoreti-

cally, such as those by Naito and Inoue6,7 and Mitchell and

Smith,8 were based either on point charge or on-line charge

models, in which clouds of Coulombically interacting ions

were substituted by point or lines of charges. This introduces

the value of the initial distance between the clouds into the

theories. However, in reality the initial separation of the

clouds is often equal to zero if proper modes of cyclotron

motion excitation are used. This case cannot be properly

addressed by point or line charge theories, because the initial

energy of interaction would be infinite. Moreover, in the

work of Naito and Inoue6,7 the problem of the occurrence of

coalescence is investigated under the assumption of center-

of-mass equations of motion being integrated independently

from the coordinates of relative position. The motion of the

center-of-mass can then be presented as a uniform rotary

motion. Mitchell and Smith8 used the same assumption to

derive the coalescence criterion. However, as shown in this

work, if the center-of-charge (for close mass-to-charge ratios
Copyright # 2009 John Wiley & Sons, Ltd.
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the difference between center-of-mass and center-of charge is

negligible) rotates at a constant velocity and at a steady

radius, ions of different mass-to-charge ratios are already

seen as one peak in the Fourier spectrum. The conditions of

coalescence in the work ofMitchell and Smith, andNaito and

Inoue, are also arguable. In the work of Mitchell and Smith8

in order for coalescence to take place the frequency of the

mutual revolving of the clouds should be higher than the

difference between the cyclotron frequencies. In the work of

Naito and Inoue7 the complex of two coalescing clouds can

be split only if the frequency of the mutual revolution

resonates with the frequency of the force that makes the

distance between the clouds oscillate. It is not obvious

though, and it is not proved in the cited papers, why these

conditions are necessary.

The current work deals with the arbitrary interaction

potential, which makes it possible to analyze finite-sized

clouds of any shape. The final analytical expression for the

coalescence condition is found for the case of uniformly

charged spheres.
GENERAL THEORY

Let us consider two ion clouds of two masses – m1, m2 and

equal charges q (in order to simplify the theory we assume

the total charges of the clouds to be equal). These ion clouds

are considered to have 2 degrees of freedom each, i.e. their

position in the XY plane described in terms of their Cartesian

coordinates (the two-dimensional case). We also assume the

ion clouds to be axially symmetric and of a constant shape;

therefore, their interaction can be described by an interaction

potential w(L), where L is the distance between the centers of

the clouds. Since the clouds are axially symmetric, their spin-

like rotation may not be taken into account. The equation of

motion for the center of each cloud in the stationary frame of

reference is then:

m~as ¼ q ~vs � ~B
h i

þ ~FC; (1)

where FC is the force created by the potential w,~vs and~as are

the velocity and the acceleration vectors in the stationary

frame of reference and ~B is the magnetic field vector. The

magnetic field is uniform and is oriented perpendicular to

the XY plane. We neglected the radial electric field caused by

the potential at the trapping electrodes.

Since we plan to deal with ion clouds of close masses, we

will therefore introduce an average mass M¼ (m1þm2)/2

and Dm¼ (m2 � m1)/2, so that m1¼M � Dm, m2¼MþDm.

We can then consider the motion of the clouds in the frame of

reference which rotates at a mean cyclotron frequency

V¼ qB/M. The law of transition to a non-inertial frame of

reference is9 as follows:

m~a� ¼ ~FþmV2~v� � 2m ~V�~v�
h i

; (2)

where ~r�;~v�;~a� are the radius-vector, velocity and accelera-

tion, respectively, of the center of the cloud in the rotating

frame of reference and ~F ¼ q ~vs � ~B
h i

þ ~FC.
Copyright # 2009 John Wiley & Sons, Ltd.
In terms of ~r� and ~v�; ~F is expressed as:

~F ¼ q ~V�~r�
h i

þ~v�
� �

� ~B
h i

þ ~FC ¼ q ~v� � ~B
h i

þ q ~V�~r�
h i

� ~B
h i

þ ~FC

¼ q ~v� � ~B
h i

�~r� � qBVð Þ þ ~FC: (3)

We have used the triple product expansion here (note that
~B is directed in the opposite way to ~V for positive charges).

We can now obtain the equation of motion in the rotating

frame of reference:

m~a� ¼ q ~v� � ~B
h i

�~r� � qBVð Þ þmV2~r� � 2m ~V�~v�
h i

þ ~FC:

(4)

We will omit the asterisk mark on coordinates in the

rotating frame of reference, because we only use these

coordinates hereafter.

~a ¼ q

m
~v� ~B
h i

� V2 � qB

m
V

� �
~r� 2 ~V�~v

h i
þ
~FC
m

; (5)

We then replace B with MV/q:

~a ¼ �M

m
~v� ~V
h i

�V2 1�M

m

� �
~r� 2 ~V�~v

h i
þ
~FC
m

: (6)

~a ¼ ~V�~v
h i

M
m � 2
� �

�V2 1� M
m

� �
~rþ ~FC

m

¼ � ~V�~v
h i

M�2Dm
M�Dm

� �
�V2 �Dm

M�Dm

� �
~r� ~FC

M�Dm

; (7)

where ‘þ’ denotes the cloud of the larger mass and ‘�’ is for

the lower mass.

The coalescence takes place only for the clouds with close

mass-to-charge ratios of the ions. Therefore, we will simplify

the equation of motion on the basis of the assumption that

Dm << M. To obtain a first-order approximation we should

take into account that v=Vr is of the order of Dm=M, because:

v � vs �Vr ¼ qB

m
r�Vr ¼ Vr

M

m
�Vr

¼ Vr
M

M� Dm
� 1

� �
� Vr

Dm

M
: (8)

We should then take a zero-order approximation for
M�2Dm
M�Dm

� �
and a first-order approximation for �Dm

M�Dm

� �
. We

should also take a zero-order approximation of the Coulomb

force in relation to Dm=M, which gives us:

~a ¼ � ~V�~v
h i

�V2 �Dm

M

� �
~r�

~FC
M

: (9)

This equation is analogous to the equation of motion in

crossedmagnetic and electric fields.10 Therefore, in this work

wewill try to describe themotion of the ion clouds in terms of

their averaged drift motion. The drift motion is described by

the equation:10

~vd ¼
1

q

~F� ~B
h i

B2
; (10)

where ~vd is the drift velocity. In our case:

~vd ¼ �
~ae � ~V
h i

V2
; (11)
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where ~ae is the acceleration that would be imparted by the

electric field if there were no magnetic field. When we apply

this to Eqn. (9):

~vd ¼ � �Dm

M

� �
~r� ~V
h i

�
~FC � ~V
h i
MV2

(12)

and for each cloud the equations of the drift motion are:

~v1 ¼ � Dm

M

� �
~r1 � ~V
h i

þ
~FC � ~V
h i
MV2

and ~v2 ¼
Dm

M

� �
~r2 � ~V
h i

�
~FC � ~V
h i
MV2

;

(13)

where ~r1,~r2 and ~v1,~v2 are the radius vectors and velocities,

which describe the drift motion of the centers of the ion

clouds (in the rotating frame of reference).

Instead of the coordinates of each cloud~r1 and~r2 we will

use the following:

~r0 ¼
~r1 þ~r2

2
and~r 0 ¼

~r2 �~r1
2

: (14)

The advantage of using~r0 and~r 0 coordinates is that in the

linear approximation the charge induced on the detection

electrodes is proportional to ~r1 þ~r2ð Þ, given that the charges

of the ion clouds are equal.3 Since the induced charge is the

only value detected by the FTICR mass spectrometer, we

only need to solve the equations of motion for~r0 and this will

be enough to find the form of the ICR signal and the FTICR

spectrum. Thus, Eqns. (13) and (14) are transformed into:

~v0 ¼
Dm

M

� �
~r 0 � ~V
h i

and ~v0 ¼ Dm

M

� �
~r0 � ~V
h i

�
~FC � ~V
h i
MV2

;

(15)

where ~v0 ¼ d~r0=dt and ~v0 ¼ d~r 0=dt.

When we differentiate the first equation by time and

substitute _~r 0 with~v0 from the second equation, we can obtain

an expression for ~a0 ¼ d~v0=dt:

~a0 ¼
Dm

M

� �
Dm

M

� �
~r0 � ~V
h i

�
~FC � ~V
h i
MV2

0
@

1
A� ~V

2
4

3
5

¼ � Dm

M

� �2

V2~r0 þ
Dm

M

� �~FC
M

: (16)

Here ~FC depends only on ~r 0 and these vectors are co-

directional, i.e. ~FC can be expressed as ~FC ¼ fðr 0Þ �~r 0, and~r 0

can be in turn expressed from Eqn. (15), taking into account

that the vectors ~r 0 and ~V are orthogonal:

~r 0 ¼ � M

Dm

� �
1

V2
~V�~v0
h i

; (17)

for magnitudes:

~r 0j j ¼ M

Dm

� �
1

V
~v0j j: (18)

Now if we substitute ~FC in Eqn. (16) with its expression:

~a0 ¼ � Dm

M

� �2

V2~r0 � f
Dm

M

� �
1

V
v0

� �
1

V2

~V�~v0
h i

M
: (19)
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For Cartesian coordinates, Eqn (19) appears as:

€x0 ¼ �v2x0 � uf v0=vð Þ _y0; (20a)

€y0 ¼ �v2y0 þ uf v0=vð Þ _x0; (20b)

where:

v ¼ VDm=M; u ¼ 1=MV: (21)

x0, y0 are the components of the radius-vector ~r0. Simple

transformations (multiplying Eqn. (20a) by _x0 and Eqn. (20b)

by _y0 and then adding) will give the fist integral:

v 2
0 þ v2r 2

0 ¼ E; (22)

where E is a constant to be found from the initial conditions.

Another first integral (known as the angular momentum)

may be found by multiplying Eqn. (20a) by y0 and Eqn. (20b)

by x0, and then subtracting:

€y0x0 � €x0y0 ¼ uf v0=vð Þ _x0x0 þ _y0y0ð Þ; (23)

d

dt
_y0x0 � _x0y0ð Þ ¼ 1

2
uf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
v2 � r 2

0

q� �
d r 2

0

� �
dt

; (24)

Here we have also replaced v0 with its expression derived

from Eqn. (22). Since

r 0 ¼ v0=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=v2 � r 2

0

q
; (25)

and then

d r 2
0

� �
¼ �d r 02

� �
; (26)

we can show that integrating the right-hand side of Eqn. (24)

gives us the potential of Coulomb interaction w :Z
uf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
v2 � r 2

0

q� �
d r 2

0

� �
¼ �2

Z
uf r 0ð Þ � r 0dr 0

¼ �2

Z
FC r 0ð Þ � dr 0 ¼ D’: (27)

Taking into account this result we can integrate Eqn. (24)

and obtain:

_y0x0 � _x0y0 ¼
1

2
uD’: (28)

Equations (28) and (22) form a system of equations for _x0
and _y0 :

_x 2
0 þ _y 2

0 þ v2r 2
0 ¼ E; (29a)

_y0x0 � _x0y0 ¼
1

2
uD’: (29b)

This allows us to express _x0 and _y0 in terms of x0 and y0 :

_x0 ¼ � 1

2

uD’ � y0
r 2
0

� x0
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� v2r 2

0 � u2D’2

4r 2
0

s
; (30a)

_y0 ¼
1

2

uD’ � x0
r 2
0

� y0
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� v2r 2

0 � u2D’2

4r 2
0

s
; (30b)

Finally we can use Eqn. (30) to find dr0=dt:

dr0
dt

¼ x0 _x0 þ y0 _y0
r0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� v2r 2

0 � u2D’2

4r 2
0

s
: (31)
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If we introduce a function:

g r0ð Þ ¼ E� v2r 2
0 � u2D’2

4r 2
0

; (32)

so that
dr0
dt

¼
ffiffiffiffiffiffiffiffiffiffi
g r0ð Þ

q
; (33)

the g(r0) function can then be used as a characteristic function

to study the coalescence phenomenon. Knowing this

function one can find the range of variation of r0, because

the ion cloudmotion can only proceed if r0 is in the regions of

positive g(r0), and never in the regions of negative g(r0), since

dr0/dt would be imaginary in this region, which is

impossible.

If the Coulomb interaction is not taken into account and the

clouds are initially fully overlapped, r0 oscillates from its

initial value (excitation radius) to zero since the g(r0) function

is positive over this interval. This means that the rotation

radius for the center-of-charge (observed from a stationary

frame of reference) changes from maximum to zero

periodically. The detected signal will appear as a sinusoidal

oscillation with the amplitude alternating from maximum to

zero. This effect is known as beats and results in two close

peaks in a FTICR spectrum.

However, if we take the Coulomb interactions into

account, it turns out that for some kinds of interaction

potentials (e.g. the interaction of uniformly charged

spheres) under certain conditions the value of r0 may be

locked in a narrow interval near its initial value, denoted

here as R. If the ion clouds start in the same position, R will

be equal to the excitation radius. The alteration range of the

amplitude for the detected signal is then defined by the

width of the interval in which r0 is locked. The beats then

do not appear, and the transient has the form of a

modulated signal. Such a transient is known to give a major

peak and two side peaks in a FTICR spectrum, which is to

say that the peaks of the two masses are unresolved. The

intensities of the side peaks are proportional to the depth of

modulation, i.e. to the width of the interval of r0 alternation.

Let us consider the transition from non-coalescent to

coalescent motion for the example of ion clouds in the

form of uniformly charged spheres.
The case of uniformly charged spheres
The interaction potential between two uniformly charged

spheres (of radius r and charge q each) is:11

’ Lð Þ ¼ kq2
192r5 � 80L2r3 þ 30L3r2 � L5

160r6
for L < 2r (34)

and

’ Lð Þ ¼ kq2

L
for L � 2r; (35)

where L is the distance between the centers of the clouds, and

k is Coulomb’s constant. From Eqn. (25):

L ¼ 2~r 0j j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=v2 � r 2

0

q
: (36)
Copyright # 2009 John Wiley & Sons, Ltd.
We assume that the clouds are initially fully overlapped,

i.e. L(t¼ 0)¼ 0, then:

D’ Lð Þ ¼ ’ Lð Þ � ’ 0ð Þ

¼ kq2
�80L2r3 þ 30L3r2 � L5

160r6
for L < 2r (37)

and

D’ Lð Þ ¼ ’ Lð Þ � ’ 0ð Þ ¼ kq2
1

L
� 6

5r

� �
for L � 2r: (38)

If we identify the initial cyclotron radius of both clouds by

R, and since L(t¼ 0)¼ 0, from Eqn. (36) we get E ¼ v2R2, and

thus L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r 2

0

q
.

Thus it turns out that in the case of uniformly charged

spheres the interval of r0 alternation experiences an abrupt

change at a certain critical value of charge that each cloud

bears (i.e. number of ions in each cloud). Figure 1 shows (a)

the g(r) functions, (b) the center-of-charge trajectories and (c)

the resulting FTICR spectra for three values of kq2u. The

trajectories and spectra are obtained by a numerical solution

of the system of differential Eqns. (30) with the interaction

potential defined by Eqns. (34) and (35). For numerical

computations we chose the unit of length so that R¼ 1, and

the unit of time so that V¼ 1. These units will be referred to

as l.u. and t.u., respectively. r¼ 0.4 l.u. The numerical

solution was based on MATLAB 7.5 (The Math Works,

Natick, MA, USA) ordinary differential equation solver

ODE45. The values of kq2u (in (l.u.)3/(t.u.)) shown in Fig. 1

are: slightly lower (0.003) than the critical value (left row),

near (0.042) the critical value (middle row) and slightly

higher (0.05) than the critical value (right row).

In the case of kq2u¼ 0.003 the interval of r0 alternation

spans from 0.4R to R, but for kq2u¼ 0.005 this interval shrinks

to about 0.98R,R. This transition happens at a certain value of

kq2u when the flexure of the graph becomes tangential to the

axis of the abscissa (Fig. 1(a), center). At this point the lower

boundary of the interval of r0 alternation jumps from 0.65R to

0.95R. We will consider this value of kq2u as minimal for the

onset of the coalescent motion regime. The trajectories

(Fig. 1(b)) and the spectra (Fig. 1(c)) also demonstrate that the

motion switches from separate to coalescent at this point. The

same condition canbeused for an arbitrarypotential, if the effect

of abrupt reduction of the range of r0 alternation takes place.

The condition of coalescent motion described above can be

formalized as: dg=dr0 ¼ 0 and g ¼ 0 at certain r0. It is

convenient to introduce a new variable j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r 2

0

q
and to

replace r0 with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � j2

p
. The physical meaning of j is

(according to Eqn. (36), and taking into account that

E ¼ v2R2) half of the distance between the centers of the

ion clouds. The condition, which is fulfilled at the threshold

of coalescent and normal motion, remains the same:

dg=dj ¼ 0 and g ¼ 0 at certain j. Using the expression for

g(r0) (Eqn. (32)) (taking into account that E ¼ v2R2) this

condition is transformed into:

v2j2 � u2D’2

4 R2 � j2
� � ¼ 0; (39)

d

dj
v2j2 � u2D’2

4 R2 � j2
� �

 !
¼ 0: (40)
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Figure 1. The g (r0) functions, center-of-charge trajectories and the resulting spectra for different values of kq 2u.
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Since D’ < 0 for equally charged clouds, Eqn. (39) is

equivalent to:

D’ ¼ � 2vj

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � j2

q
: (41)

Using Eqn. (41), Eqn. (40) can thus be transformed into:

d

dj
D’ ¼ d

dj
� 2vj

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � j2

q� �
: (42)
Copyright # 2009 John Wiley & Sons, Ltd.
Equations (41) and (42) are equivalent to the statement that

function Dw(j) is tangential to the function:

h jð Þ ¼ � 2vj

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � j2

q
: (43)

As can be seen from Fig. 2, in order to evaluate the

coalescence threshold one may use the point-charge-like

D’ r0ð Þ function with the appropriate initial energy:

D’ jð Þ ¼ kq2
1

2j
� 6

5r

� �
: (44)
Rapid Commun. Mass Spectrom. 2009; 23: 3213–3219
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Figure 2. h(j) (thin line) and Dw(j) (thick line) at a critical

value of kq2u for the case of uniformly charged spheres

(dashed line is point charge approximation).

Figure 3. Threshold value of kq 2u depending on the radius of

the cloud r: computed numerically (solid line) and given by

formula (48) (dashed line). r is expressed in fractions of R, i.e.

in (l.u.).
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Figure 2 also shows that the h(j) function may be

approximated by a linear function in a wide range of j.

One may see that the j coordinate of the point of tangency is

of the order of the radius of ion cloud, and that the ion cloud

radius is usually a few times smaller than R. That means that

it would be reasonable to replace h(j) with a linear function in

order to simplify the determination of the coalescence

criteria. The linear approximation of h(j) is:

h1 ¼ � 2vR

u
j: (45)

Considering this, Eqns. (41) and (42) are simplified to:

D’ ¼ � 2vR

u
j; (46)

d

dj
D’ ¼ 2vR

u
: (47)

For the case of spherical ion clouds, i.e. with the interaction

potential defined by Eqn. (44), Eqns. (46) and (47) result in:

� kq2
1

2j2
¼ � 2vR

u
; (48)

kq2
1

2j
� 6

5r

� �
¼ � 2vR

u
j: (49)

This system of equations is easily resolved by substituting

j from Eqn. (48) into Eqn. (49). The solution for kq2u is then:

kq2u ¼ 25

9
r2Rv: (50)

In order to verify the results of our analysis we computed

the trajectories of interacting ion clouds by solving the

equations of motion (1) (with the interaction potential

defined by Eqns. (34)and (35)) numerically using the

MATLAB 7.5 differential equation solver ODE45. For

different values of r we picked out the threshold value of

kq2u, while the other parameters were: R¼ 1, Dm/M¼ 0.01,

and V¼ 1. The threshold value of kq2u was then compared

with Eqn. (50) (Fig. 3). For values of r greater then R/2 the

coalescence does not appear as a jump-like process, but as a
Copyright # 2009 John Wiley & Sons, Ltd.
gradual shift of the detected frequencies towards each other.

Therefore, that region is not shown on the diagram. The

comparison shows good agreement in the region where our

model is valid. For small values of r the drift model is

probably not applicable because the distance between the

cloud centers undergoes considerable change throughout a

single drift oscillation due to the strong repulsion.

In order to obtain the direct expression for the number of

particles needed for the onset of coalescence we should

substitute u and v with their expressions in Eqn. (21). Then:

kq2
1

MV
¼ 25

9
r2R

VDm

M
: (51)

If the cloud consists of N particles then M¼Nm, q¼Ne,

where m and e are the mass and charge of a single ion. When

we substitute M, q and V in Eqn. (51) with their values, N is

expressed as:

N ¼ 25

9

r2R Dm=mð ÞB2

km
; (52)

where Dm is half of the mass difference between ions in

different clouds.

Arbitrary interaction potential
The method described for the case of uniformly charged

spherical clouds can be generalized for an arbitrary

interaction potential. If an abrupt reduction in the range of

r0 alternation at a certain value of kq2u (which is proportional

to the number of ions) takes place, all the mathematics

leading to Eqns. (41) and (42) (or their simplified versions

Eqns. (46) and (47)) remain valid. As an example, the g(r)

function for elliptical, uniformly charged ion clouds (semi-

axes related as 3:1:1) has this feature (Fig. 4). Equations (46)

and (47) make it possible to formulate a simple algorithm for

finding the necessary number of ions for the coalescence to

occur. Saywe have an arbitrary interaction potential between

two ion clouds of the same charge and a slightly different

mass, measured from the point of zero distance between ion
Rapid Commun. Mass Spectrom. 2009; 23: 3213–3219
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Figure 4. g(r) function for the interaction potential of two

elliptical uniformly charged ion clouds at a threshold value

of number of ions.

Theory of peak coalescence in FTICRMS 3219
cloud centers. Let it be defined as follows:

D’ ¼ kq2 � c jð Þ: (53)

Again j is half of the distance between the centers of the ion

clouds, and all the notation is the same as before. Any

potential can be expressed in the form of Eqn. (53), because

any interaction potential varies as the square of the electric

charge. For c(j), Eqns. (46) and (47) appear as:

c jð Þ ¼ � 2vR

kq2u
; (54)

d

dj
c jð Þ ¼ � 2vR

kq2u
j: (55)

These equations mean that in order to find the threshold

value of kq2u one needs to draw a tangent to c(j) passing

through the origin. Knowing the slope of this line is enough

to find kq2u. Let us designate the slope of the tangent line as n,

then, as follows fromEqns. (54) and (55), kq2u can be found as:

kq2u ¼ � 2vR

n
: (56)

In order to pass on to the expression for the threshold value

of the number of ions in each cloud,N, we should substitute u
Copyright # 2009 John Wiley & Sons, Ltd.
and v just as we did for the case of spherical clouds. The

result is:

N ¼ 2

n

R Dm=mð ÞB2

km
: (57)

CONCLUSIONS

A new theory of ion cloud interactions in the magnetic fields

of a Fourier transform ion cyclotron resonance mass

spectrometer was developed. The theory can predict the

onset of synchronous cyclotron motion of clouds in the case

of close mass-to-charge ratios of the ions in these clouds

when the number of ions in the clouds increases. This theory

can be used to study the coalescent motion phenomenon for

arbitrary inter-cloud potential and hence arbitrary cloud

shape. The critical number of ions for the phase synchroniza-

tion or peak coalescence to take place depends quadratically

on the magnetic field strength and is proportional to the

cyclotron radius and inversely proportional to the ion

masses.
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