J. 203927232030

220

K]

THE ASTROPHYSICAL JOURNAL, 392:320-327, 1992 June 10
© 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE FATE OF "Be IN THE SUN

C. W. Jounson, E. KoLsg,! S. E. KOONIN, AND K. LANGANKE!
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125
Received 1990 August 22; accepted 1991 December 16

ABSTRACT
We reexamine the electron- and proton-capture rates of “Be important to the solar neutrino “problem.”

Although the assumptions implied by the traditional Debye
a careful numerical study changes the electron capture rate

approximation for plasma screening are not valid,
by less than 2%. We extrapolate experimental data

on the proton capture reaction to astrophysically relevant energies using an energy dependence that includes
-wave scattering and is shown to be relatively independent of the model space and interaction used. We find

that the solar proton capture rate is lowered by approximately 7%

from the currently accepted value.

Subject headings: nuclear reactions, nucleosynthesis, abundances — Sun: abundances

1. INTRODUCTION

The solar neutrino “problem ” (see Bahcall & Ulrich 1988
for a review) is still unresolved. Both the Homestake (Davis
1987) and Kamiokande (Hirata et al. 1989) experiments
measure a flux of high-energy (above 0.814 and 9.3 MeV,
respectively) neutrinos considerably smaller than predicted by
the standard solar model. Most of the expected high-energy
neutrinos originate from the beta-decay of B, which in turn is
produced via "Be(p, y)°B.

In this paper we reexamine the two processes that determine
the fate of "Be in the Sun. This nuclide is consumed by either

"Be +e” —»Li+v 6]

or

"Be+p—>° B+7y. )

The former has a lifetime in the core of the Sun of 7, ~ 80 days
(depending on temperature and density [Bahcall & Moeller
1969]; this core lifetime is by coincidence approximately the
same as the laboratory value) and the latter 7, & 200 yr. Since
7, > 1, the concentration of "Be is proportional to T,, imply-
ing that the high-energy neutrino flux is proportional to the
product of 7, and the (p, y) rate. This latter is of particular
interest as it is believed to be the most uncertain nuclear
physics input to the solar neutrino problem (Bahcall & Ulrich
1988).

In § 2 we calculate the effect of plasma screening on the
bound-electron contribution to the electron-capture rate A, =
1/z,. Traditionally the Debye-Hiickel approximation (DH) was
used for the plasma-screened potential for the bound electron.
However, there are three assumptions for DH that are weakly
violated in the core of the Sun. When the same assumptions are
strongly violated in laboratory plasma, experiments show that
DH fails dramatically. We have therefore pursued a careful
numerical study. We find that, despite these concerns, DH
describes the electron capture rate to within 2%.

In § 3 we present the results of a microscopic 3-cluster calcu-
lation of the astrophysical S-factor for the (p, y) reaction that
takes into account both d- and s-wave entrance channels; the
d-waves are unimportant at solar energies but are non-
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negligible at the energies at which experiments are performed,
and thus must be accounted for when extrapolating down-
ward. The energy dependence of the S-factor is calculated
using two different interactions, and found to be in accord with
each other and with previous calculations; the overall scale is
then fit to six experimental data sets. Our final conclusion is
that the p-capture cross-section is approximately 7% lower
than the value used in the standard Solar model. Unfor-
tunately, this is still far from resolving the solar neutrino
problem.

2. "Be(e, v)'Li

The ®B solar-neutrino flux is inversely proportional to the
"Be electron-capture rate, which in turn is proportional to the
density of electrons at the nucleus., A, oc [¥,(0) ]2 In the labor-
atory there are only bound electrons, but in the solar plasma
continuum electrons contribute as well (A, = Acont + Apound)
and in fact dominate. In the Sun, Apouna/Acont = 20% (Iben,
Kalata, & Schwartz 1967).

The density of electrons at the nucleus is determined by the
screened Coulomb potential. The continuum density (and con-
tribution to the rate) is insensitive to screening (Bahcall &
Moeller 1969). However, screening is much more important for
bound-electron capture, as it reduces the density by about 64%
(Iben et al. 1967).

To find the bound electron wave-function y,, one solves the
Schrodinger equation

©)

Previously, Iben et al. (1967, hereafter IKS) and others used the
DH screened potential (also often referred to as the static
screened Coulomb potential), which is found by solving

(V2 = g))V = —dnp, “

where Ry, = 1/qp, is the Debye screening length and p is the
charge density that gives rise to the unscreened potential. If
one takes p = py = Z&3(r), one obtains the standard form

. h?
H'//e = (‘_ -—Vi— V)'//e = Ewe .

2m,

Vou = Z exp (—gqpr)/r . )
(Here and throughout we take the unit charge ¢ = 1.) From
this IKS calculated both variational and numerical forms of v,
in equation (3). Bahcall & Moeller (1969), like IKS, used Vpy in
the Schrddinger equation (eq. [3]) to calculate the bound-state
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electron wave function; they then use p = py + p, with p, =
—|¥.|? in (4) to obtain Vpy and use this screened potential in
equation (3) to calculate the wave function of continuum elec-
trons.

Experiments suggest that the DH potential can fail for
bound electrons in plasmas. In particular, Goldsmith, Griem,

- & Cohen (1984) looked for evidence of line shifts in a labor-

atory plasma; from the work of Rogers, Graboske, &
Harwood (1970), who used the DH potential, one estimates a
shift in the Lyman-o line of oxygen of about 0.06 A, but Gold-
smith et al. (1984) found no line shift to within 2 ¢ uncertainty
of 0.02 A.

This experimental result is not surprising when one con-
siders the assumptions that go into using the DH potential:

1. The mean interparticle spacing 4, = N, '? is much
smaller than the Debye length Ry, (Landau & Lifshiftz 1980),

Am < Rp

2. In addition, for applications of a screened potential to
bound electrons, the number of plasma electrons within a
sphere with the radius of the Bohr orbit must be much larger
than 1 (Hummer & Mihalas 1988),

N (4n/3)ao/Z)* > 1,
or equivalently
A < 8o/Z .

3. Finally, using the DH potential assumes that the plasma
electrons and ions move on a time scale 1/ j,sm, much shorter
than the bound electron, so that the plasma “sees” two static
point charges (Hummer & Mihalas 1988).

wplasma > @,

All three assumptions are strongly violated in the laboratory
plasma of Goldsmith et al. (1984), which had an electron
density of N, = 5 x 1073 A~3 and an electron temperature of
T, = 0.070 keV. In the core of the Sun, by way of comparison,
N,=60A"3and T = 1.3 keV. The assorted scale lengths can
be easily computed: for the laboratory experiment, using
oxygen (Z = 8), one obtains R, = 3.1 A, 4,, = 6 A, and ay/Z =
0.07 A. For the plasma in the solar core, Rp, = 0218 A, 4, =
0.255 A, and a,/Z = 0.133 A. Clearly neither assumption (1) or
(2) are satisfied in either plasma, although they are more
strongly violated in the case of the laboratory experiment.

The time scales are estimated as follows. As the electronic
component of the plasma moves the fastest, one estimates
Optasma = (47 €7/m)!/* (Jackson 1975); and o, = Z%e?/hay,.
Note that the plasma ions will have a much smaller frequency
and longer time scale. In atomic units (¢*/hay = 1) one finds
that for the laboratory experiment, @pjasma = 9.7 X 1072 and
w, = 64, while for the solar core ®yjm, = 10 and o, = 16.
Thus assumption (3) is also violated, again more strongly for
the laboratory experiment.

The failure of the DH potential for laboratory plasmas has
been previously addressed by theory. Theimer & Kepple (1970)
and Skupsky (1980) accounted for assumption (3) by calcu-
lating the bound electron to interact self-consistently with the
(still classical) plasma, that is, Vpy calculated in equation (2) is
calculated using p = Z3(r) — | ¥ (r) |, and then y, calculated in
equation (1) using that V. Davis & Blaha (1982) then cor-
rected, at least in part, for assumptions (1) and (2) by treating
both the free and bound electrons in a self-consistent Hartree
calculation with occupation numbers given by a Fermi-Dirac

thermal distribution. Exchange and correlation effects for the
free electrons were included in an approximate way, but fully
antisymmetrized wavefunctions were not used because degen-
eracy effects were expected to be small for the plasmas in which
they were interested (conditions similar to those of the experi-
ments of Goldsmith et al. 1984). All three papers found signifi-
cant deviations from DH results for laboratory plasmas.

The question arises whether the DH potential fails also for
conditions in the solar core, where assumptions (1), (2), and (3)
are not quite satisfied. Our detailed numerical calculations,
described below, show that in fact DH gives | ¥,(0)|* to within
a few percent.

Our self-consistent thermal Hartree calculation is similar to
that of Davis & Blaha (1982). First, consider the continuum
(plasma) electrons. Given a screened electrostatic potential ¢
surrounding a nucleus of charge Z, Schrodinger’s equation is
integrated to give the continuum electron wavefunctions. The
charge density due to the continuum electrons is calculated
from these wavefunctions, weighted by the usual thermal
Fermi-Dirac distribution, with a chemical potential set to
match the average charge density, that is, the electron charge
density —p,, at a large distance from the nucleus Z. In
addition, the “hole” in the background (ionized nuclei of
charge Z,) charge distribution is calculated using the distribu-
tion p,[1 — exp (—Z; ¢/kT)]. Beyond a certain radius, about
Lto %ﬁ, it becomes computationally taxing to sum a sufficient
number of partial waves, and we use instead the Thomas-
Fermi approximation to arrive at the continuum electron
density, an approximation whose validity at large radii we
confirmed numerically. We then enforce charge conservation
on this charge distribution, so that the integral of the charge
density in excess of the average density p,, is exactly —Z, by
simply setting the charge density to p,, beyond an appropriate
cutoff radius. This cutoff radius was typically about 1 A, much
larger than both the Debye screening length and the character-
istic size of a bound electron orbit, and the discontinuity in
density was small. From the excess charge distribution we
solved Poisson’s equation to obtain the potential screening the
nucleus. This process was iterated until convergence.

For a pure plasma (no bound electron), the self-consistent
potential was indistinguishable from Vpy, independent of the
potential used to initiate the iterations. We found that the
density of continuum electron calculated in the self-consistent
potential (or Vpy), is about 2.4% less than that for the density
in a pure Coulomb potential. (This is slightly larger than
reported by Bahcall & Moeller 1969). This result was not
affected by the approximate introduction of exchange forces
via the local Slater approximation, V,,(r) = — 32z~ *3p(r)'>.

Next, consider the bound electron. We take the opposite of
assumption (3), that the bound electron moves much faster
than the plasma electrons. This is not quite true for our condi-
tions, but acts as a limit; and as we shall see, the effect is
negligible.

We begin with an analytic treatment in the spirit of Debye-
Hiickel, which we will call “self-consistent Debye-Hiickel ”
(SCDH). The self-consistent potential ¥ to be used in equation
3)is

V=VN+V;)N+Vpe' (6)

where the first two terms are those of IKS, with Vy = Z/r and
V,y solving

(V2 — gB)(Vy + Von) = —dmpy ; @]
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that is, Vy + V,y gives Vpy (5). The third term is new: Ve is the
solution to

(V2 = @Q)Ve + V,) = —4mp, ®

where V, is the potential generated by the bare electron,
V2V, = —d4np, . ©)

The total energy of the system can then be written as
E=(HY =T+ Ugs+ iU,y +3U,, (10)

where
h? 3 2

T ijdrww : (11)
Uns = derpe(VN + V) - (12)
UpN = strpn VpN = ‘ZZQD; s 13)
U, = Jd3rpe Vie s (14)
where again p, = —|y,|*. The factors of § in equation (10) are

corrections for self-energy terms of the plasma; one treats the
plasma as a dielectric medium and calculates the work neces-
sary to insert the nucleus-electron system into the medium
(Jackson 1975). The term —1Z2g,, is well-known as the inter-
action energy between the bare nucleus and the plasma;
because it is independent of the electron wave function it can
be ignored (but will be important later for confirming our
results).

An approximate solution to equations (3), (4), and (6) can be
obtained with a variational wave function,

Yolr) = (na®) "2 exp (—r/a) , (14)

where a is chosen to minimize E = (H). Note for a "Be**++
ion in free space, a = ao/4, where a, = 0.531 A is the Bohr
radius. Solving the Debye equation (eq. [4]), one obtains

SHINCIN
Lo (G [ (57 T} - o -aun]
Al (D)) ()

Integrating, one finds the new term in the potential is

S I
[ (1429 "2 (=) e

We can check this result by taking the limit as gpa — 0,
which corresponds to the spatial extent of the bound state
becoming small compared to the screening length; ie., the
plasma “sees” a point charge of Z — 1. In this limit, equa-
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tion (16) is —3qp. One also has (Iben et al. 1967) Uy =
—(z/a)1 + gpa/2)~ % so that

. VA
lim Uyg=——+Zqp . 17
gpa—0 a
The first term of this limit is a self-energy that we discard.
Adding the nucleus-plasma interaction energy — Z2qp/2, the
total potential energy is

U=2q, - %quD - %‘ID = —%(Z - 1)2‘11) > (18)

which is exactly what it should be.

In the core of the Sun, gp = 446 A~!, and for our varia-
tional wavefunction (14) we find ayxs = 0.162 A, and a,, =
0.156 A. We also solved the system of equations (7)—(10)
numerically, and obtained the same “self-consistent Debye-
Hiickel potential which is Vpy plus V,. given in equation (15),
although of course the numerical bound-state wavefunction
and binding energy differed from that in the variational calcu-
lation. One must then fold in the population of bound states in
the solar plasma, which is governed by the Boltzmann factor.
We follow the recipe of IKS to finally obtain in both the varia-
tional and numerical cases

AIKS/Acont = L.15 (19)
while
Ase/Acone = 1.17, (20)

a 1.7% difference.

The final step is to treat both continuum and bound electron
quantum mechanically (our Hartree calculation, as opposed to
DH and SCDH), and it is here that we find a small but definite
deviation from a classical (DH) treatment of the plasma.

Our calculation is exactly that of our full self-consistent cal-
culation of the continuum electrons is described above, but
with a bound-state electron included. Once again charge con-
servation is enforced. We find that the self-consistent correc-
tion to the DH screening potential in which the bound electron
moves is better approximated (though not exactly) by
—1/ZV,y than by the V,, given in equation (15). Again, the
self-consistent solution is independent of the initial potential
used to start the iterations. The density of continuum electrons
at the origin is virtually unaffected by the presence of the
bound state.

We give our results for a bound electron in Table 1. The
units are those of a "Be* * * ion in free space. We compare the
numerical results using the DH potential, the self-consistent
DH potential (eq. [15]), and the full quantum-mechanical
Hartree calculation. Note that one needs not just the binding
energy E, of the electron as calculated in the Schrédinger equa-
tion, but also, as in (10), account for the change in the plasma

TABLE 1

NUMERICAL RESULTS FOR BOUND ELECTRON IN 'Be* *+
AT THE SUN’s CORE

POtentia] I '/’(0) |z/l .l’free(o) |2 Ebind/Erree Esys/El‘ree Rate
DH............. 0.67 0.22 0.22 18.2%
SCDH.......... 0.72 0.38 0.30 19.9%
Hartree......... 0.79 0.42 0.34 21.9%

Nortes—“Free” denotes "Be* * * in free space. The rate is relative to the
contineum contribution. See text for details:
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Fig. 1.—World’s data on "Be(p, y)®B, given as astrophysical S-factor

self energy due to the introduction of the bound electron; the
relevant quantity is the “binding energy of the system,” E,.
The rate is given in units of the continuum electron rate, and is
calculated using the formula of IKS. The full Hartree calcu-
lation gives a total electron capture rate 3.7% larger than that
using DH; however, subtracting off the 2.4% lowering of the
continuum rate by use of DH continuum wavefunctions, the
total change in the electron capture rate is only 1.3%—
negligible in the context of the solar neutrino problem.

3. "Be(p, y)*B

We now turn to the production of ®B via the (p, y) reaction.
There have been six measurements of the "Be(p, )*B cross
section, shown in Figure 1: Kavanagh (1960), Parker (1966,
1968), Kavanagh et al. (1969), Vaughn et al. (1970), Wiezorek et
al. (1977), and Filippone et al. (1983). The lowest experimental
data point is at center-of-mass E = 117 keV; to determine the
reaction rate in the solar core, the data must be extrapolated to
lower energies (E ~ 0-20 keV) using an energy dependence
calculated in a direct-capture model.

There are three sources of uncertainty to be considered:
uncertainty in the theoretical energy dependence (which in
turn depends on the model space and interaction used), uncer-
tainty in the one-parameter (overall normalization) fit to the
experimental data, and uncertainty in the normalization of the
experimental data. We consider only the first two in this paper.
Barker & Spear (1986) have raised some questions about the
third, noting that many experimental normalizations can be
traced to a stopping power of protons in lithium that Barker &
Spear (1986) consider suspect. However, we note that Filip-
pone et al. (1983) found no change within their quoted uncer-
tainties if their data were normalized in a manner independent
of this stopping power.

The standard solar model (Bahcall & Ulrich 1988) currently
assigns to the "Be(p, 7)°B reaction a zero-energy S-factor of
S1,(E = 0) = 0.0243 £ 0.018 keV barn~! (the uncertainty is
that of Parker 1986; Bahcall & Ulrich 1988 quote a 3 ¢ uncer-
tainty, which is 22%) and an energy derivative of §1,(0)= —3
% 10~ 5 barns. These values have been obtained from extrapo-
lations that use the energy dependence of a potential model of
structureless "Be + p fragments and consider only s-wave scat-
tering in the entrance channel (Tombrello 1965).

Robertson (1973), and later Barker (1980) and others, criti-
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cized this extrapolation, pointing out that d-wave capture
cannot be neglected at the energies where the data are taken
(E <1 MeV). These authors showed that d-wave capture
modifies the energy dependence of the low-energy cross section
to the extent that the extrapolated value of S;,(0) is reduced by
about 15%. One weakness in this analysis is that there are
essentially no experimental constraints on the d-wave poten-
tial. Barker found only a slight dependence on the d-wave
depth and so equated the d-wave and s-wave interactions, the
parameters of the latter being determined by the experimental
"Li + n scattering and capture cross sections. While Filippone
et al. (1983) adopted an extrapolated S,,(0) using only s-wave
capture (Tombrello 1965), they noted that use of Barker’s
(1980) energy dependence gave an extrapolated value
10%—15% lower.

Two recent microscopic calculations of the "Be(p, 7)®B reac-
tion have treated the various s- and d-wave capture contribu-
tions consistently within the same 8-nucleon model space
(Descouvemont & Baye 1988; Kolbe, Langanke, &
Assenbaum 1988). While these approaches, which use an effec-
tive nucleon-nucleon interaction, are not accurate enough to
predict absolute cross sections, the calculated energy depen-
dences agree qualitatively with that of Barker (1980) and so
confirm the importance of d-wave capture contributions.
However, neither work extrapolated the experimental data to
low energies using the calculated energy dependence.

3.1. Microscopic Calculation of the Energy Dependence

In this section, we present microscopic calculations that
extend the approach of Kolbe et al. (1988) to a full dynamical
3-cluster treatment of the reaction. In detail, our model space is
spanned by fully antisymmetric p + *He + “He cluster wave
functions

[P = o {XI‘, [(Ph @ D) ® K(f)]”gz’,'}(r)} (1)
with

|0k = o {®,[0f ® Y(P)Y1"GL..()} - 22

Here, we have formally written the 8-nucleon wave function as
a "Be + p cluster function, while the internal degrees of
freedom of the "Be fragment are described by a *He + « cluster
function. In equation (21), @2 is the spin-isospin function of
the proton (spin I, = %), while in equation (22), ®, and o1
describe the internal degrees of freedom of the a particle
(assumed to be T = S = 0) and of the *He-nucleus (I’ = 1). The
separations of the p + "Be and *He + “He clusters are r and 1/,
respectively. Correspondingly, g(r) and §(r) are the relative
wave functions between these cluster fragmentations; they
might be different for different values of the channel spin I.
Thus, the relative wave function (') in equation (22) carries an
index I. Further, as we will in the following consider only the
ground-state of "Be, L =1 and I, = 3/2, so that the channel
spin I in equation (21) can thus take the values I =1, 2. To
reduce the computational effort, we have neglected coupling of
channels with different orbital angular momenta. Thus, [ = 1
for the ®B ground state, while [ =0, 2 for the important
"Be + p scattering states, allowing E1 capture into the °B
ground state.

Our calculations use either the Minnesota force (Chwieroth
et al. 1973) or the Hasegawa-Nagata force (Furitani et al. 1980)
as the effective nucleon-nucleon interaction. We have adjusted
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one of the parameters in each of these interactions (the
exchange mixture parameter u in the Minnesota force and the
Majorana exchange parameter m of the medium-ranged
Gaussian in the force of Furitani et al. 1980) to reproduce the
binding energy of the ®B ground state relative to the "Be + p
threshold. The properties of the individual clusters (p, 3He,
“He) do not depend on these interaction parameters.

We determine the dynamical degrees of freedom in our
approach—the relative wave functions g and § in equations
(21), 22)y—by solving the many-body Schrédinger equation
assuming fixed internal cluster structures. Different procedures
for doing so have been used for the bound and scattering
states. In both cases we first calculate the "Be ground state by a
standard two-cluster RGM treatment of the seven-nucleon
problem, equation (22). To reduce the numerical effort neces-
sary to calculate the ®B wave functions, we have then expanded
the radial wave function § in a minimal number of basis wave
functions. As in Kolbe et al. (1988), we succeeded in represent-
ing § by a sum of only two radial harmonic oscillator states
ug(r, ) with different width parameters fp and quantum
numbers(L=1,N=2n+ L =1)

grh(r) = agugZi(r, By) + apukZi(n B,) . (23)

When inserted in equation (22), this expression well-reproduces
the properties of the "Be ground state obtained in the full
RGM approach.

In solving the 3-cluster problem, we have expanded the rela-
tive wave function gjf in a basis of 24 harmonic oscillator
states ui(r, ):

6 3
gtp;(") = Z o ﬂff; “5v=l+2n(", Vm) - (249

m=1 n=

At a radius beyond the range of the nuclear forces and the
influence of the Pauli principle, g7 is matched to the appropri-
ate asymptotic boundary condition for bound and scattering
states, respectively.

In our bound state calculation, we have allowed the param-
eters o; and By~ in equations (23) and (24) to vary, particularly
allowing a,, o, to be different for any triplet of indices (m, n, I).
The values of these parameters were determined by minimizing
the ®B ground state energy. If we adopt u = 1.1315 in the
Minnesota force and m = 0.3714 in the Hasegawa-Nagata
force, our approach can reproduce the experimental binding
energy of the ®B ground state relative to the p + "Be threshold
(Ep = 138 keV). These values of (u, m) are typical for studies of
light nuclear reactions.

For our two different effective interactions, the parameters in
the "Be ground state (22) are

a = 001390 B, =2.319 fm
a, = —0.03334 B, = 1.026 fm

for the Minnesota force and

0.01229 B, = 2.331 fm
—0.06986 B, = 1.046 fm

oy

®

for the Hasegawa-Nagata force.

For the scattering states, we solved the 3-cluster problem by
introducing a set of "Be pseudostates. These are obtained by
diagonalizing the microscopic seven-nucleon Hamiltonian in
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the two-dimensional Hilbert space spanned by the basis func-
tions (eq. [22]) considering the coefficients «;, a, as variables
and using the same width parameters as above. The resulting
lower eigenstate is identical to the "Be ground state defined
above. The upper pseudostate generally does not correspond
to a physical level, but rather is just a tractable way of account-
ing for distortion in the scattering states (Shen et al. 1985).
Upon inserting the two "Be configurations into equation (21),
we define p + "Be channels, which, after the appropriate
asymptotic boundary condition is imposed, can be interpreted
as the (physical) p + "Be system and an inelastic p + "Be*
channel. Note that the inelastic channel is closed at the low
p + "Be energies of interest in this paper. The corresponding
coupled-channel problem can be solved with standard tech-
niques (Wildermuth & Tang 1977).

At low energies, the "Be(p, 7)®B cross section is dominated
by E1 capture into the ®B ground state. We have calculated the
respective many-body matrix elements of the electric dipole
operator in the long-wavelength approximation, truncating the
integral over the radial relative coordinate at 200 fm.

It is convenient to present the cross section in terms of the
astrophysical S-factor:

S(E) = o(E)E exp {2nn(E)} , 25)

where in the present case the Sommerfeld parameter is given by
2an(E) = 117.47/\/E with the energy expressed in keV. Fur-
thermore, for applications to the solar neutrino problem, the
relevant quantities are S(0) and its first two derivatives at
E=0. For these latter two we use the normalization-
independent parameterization given by Williams & Koonin
(1981), namely

148
e L+ bE.
sae_ "

These three quantities are given in Table 2. We give the theo-
retical S, ,(0) only for completeness; in the next subsection, we
use experiment to set the overall normalization. While the
Minnesota force predicts an S-factor 5% smaller than that of
the Hasegawa-Nagata force, the two calculations predict
nearly identical energy dependences for the low-energy cross
section. Therefore we adopt values of a = —1.00 MeV ™! and
b =28.96 MeV~2 with “theoretical uncertainties” of 1% or
less.

Our calculations with the Hasegawa-Nagata force can be
compared with those of Kolbe et al. (1988), who adopted the
same effective interaction but a less flexible model space. Our
cross sections are about 10% lower than those of Kolbe et al.
(1988) because of a smaller amplitude in the asymptotic *B
ground state. The calculated energy dependences are similar,
as are the relative contributions of E1 capture from the

TABLE 2

Low-ENERGY PARAMETERS OF COUPLED-CLUSTER
CALCULATION OF S,

Parameter Minnesota Hasegawa-Nagata
S(0) (keV) barn ! 0.02514 0.02384
a(MeV™?) —-0.99 —1.01
b (MeV~2) 9.01 8.90

Notes.—a and b are from the parameterization of Wil-
liams & Koonin 1981 ; see text.
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p + "Be d-wave. Distortion effects are important in the 8B
ground state, but negligible in the low-energy "Be + p scat-
tering states.

Barker adjusted his parameters for his model using
7Li(n, 7)2Li; therefore, for comparison, we have calculated the
7Li(n, 7)Li capture cross sections into the °Li ground state
using the Hasegawa-Nagata force. The calculation is identical
to that for "Be(p, 7)®B, except for the appropriate changes in
the isospin quantum numbers and in the internal cluster
parameters for the *H and 7Li nuclei. To reproduce the
binding energy of °Li, we have adjusted the Majorana
exchange parameter in the effective interaction to m = 0.3684.
With a flux of neutrons with a (center-of-mass energy)
Maxwell-Boltzmann distribution with kT = 21.3 keV (which
corresponds to a distribution of laboratory energies with
kT = 25 keV), we find a capture cross section of 30.6 mbarns.
This should be compared to the experimental values of
402 + 2 mbarns (Imhof et al. 1959) and 45.4 £ 3.0 mbarns
(Lynn, Jurney, & Raman 1991) which have been derived by
scaling by 1/v and by adopting the experimental branching
ratio for capture into the excited 1% state (10.6 + 10%) of 8Li
as we calculate only capture to the ground state. Note,
however, that our present results should not be overinterpreted
as our calculation does not reproduce the scattering length a,
in the I = 2 "Li + n channel, which, in turn, yields the domi-
nant contribution (91%) to the low-energy capture cross
section. We find a, = 0.26 fm, while the experimental value is
—3.59 4+ 0.06 fm. On the other hand, we find a good agree-
ment in the I = 1 channel: a, = 1.25 fm, to be compared with
the experimental value 1.09 £ 0.2 fm.

We argue, however, that our results for the "Li(n, )8Li reac-
tion do not really bear on the quality of our "Be(p, y)°B results.
The "Li(n, 7)°Li reaction is sensitive to the complete (i.e.,
interior) wave functions in the initial and final channels, as
penetration of the neutron is not inhibited by the Coulomb
barrier. In contrast, the "Be(p, 7)°B reaction at low energies is a
direct capture process sensitive mainly to the asymptotic forms
of the wave functions, especially to the amplitudes of the Whit-
taker functions of the 8B ground state and to the s- and d-wave
phase shifts. The latter dominate the energy dependence of the
low-energy cross section, while the spectroscopic amplitude
determines its absolute magnitude.

3.2. Extrapolation of Experimental Data

Our most important results are the energy dependences and
the subsequent extrapolations to E = 0. Not only do our cal-
culated energy dependences with two different effective inter-
actions agree well with each other, but they are also in good
agreement with the microscopic GCM calculation of Descou-
vemont & Baye (1988) (who used a somewhat less flexible
microscopic 3-cluster approach and yet a third effective
interaction), and the phenomenological potential model results
of Barker (1980). We can therefore conclude that the energy
dependence of the low-energy "Be(p, 7)°B cross section as cal-
culated in all of these approaches are reasonable and that they
differ from the experimental data only by a normalization
facgor (as can be embodied in the proton spectroscopic factor
of °B).

It is important to note that these calculations can only be
trusted for E < 430 keV, above which the inelastic excitation of
the 1/2" state in "Be is possible, and that no calculation to date
includes this inelastic channel. Because flux is lost to this
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channel, optical-potential models (Tombrello 1965 or Barker
1980) should use a complex, not real, potential above 430 keV.
As noted above, our 3-cluster model only includes 3/2 states
and so also does not describe this inelastic channel; an exten-
sion of the present microscopic calculation is in principle
straightforward, but computationally very taxing. The loss of
flux could be nonnegligible: the isospin-conjugate reaction,
7Li(n, n')"Li, shows an abrupt rise from threshold in the excita-
tion function for 480 keV photons (Ajzenberg-Selove 1984).
For this reason we only use our calculation of the "Be(p, 7)°B
reaction at energies where the inelastic channel is not open.

In view of the foregoing, we are justified in using our energy
dependence, consistently including the s- and d-wave capture
contributions, to extrapolate the experimental low-energy data
below 430 keV to E =0, with the normalization constant
determined by a least-squares fit. Only the data of Kavanagh
et al. (1969) (hereafter Kav69), Wiezorek et al. (1977), and
Filippone et al. (1983, hereafter Fil83) allow this procedure. [In
fact, Parker 1968 has one point at E_,, = 422 keV; however,
one obtains the same result by either (a) normalizing our theo-
retical curves by the single point at 422 keV or (b) normalizing
Kav69 and Fil83 as described below.] Figure 2 shows the fits
to Kav69 and Fil83.

However the remaining three experiments (Kavanagh 1960;
Parker 1966, 1968; Vaughn et al. 1970) provide valuable infor-
mation and should not be excluded. The experiments of Kav69
and Fil83 include data both below and above 430 keV. There-
fore we normalized the high-energy data of Kav69 and Fil83 to
match the experiments of Kavanagh (1960), Parker (1966,
1968), and Vaughn et al. (1970). (We only used the Kav69 data,
which is plotted in Kavanagh 1972, up to 1460 keV.) This
normalization is then automatically extrapolated to E = 0 by
the low-energy fit to Kav69 and Fil83. This procedure not only
avoids the use of suspect theoretical calculations above 430
keV, but also obviates the need to carefully subtract the reson-
ance at 630 keV (below 430 keV the resonance contributes no
more than 3% to the cross section). The extrapolated values of
S,, of Kavanagh (1960), Parker (1968), and Vaughn et al

||||I||||
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Fic. 2.—Extrapolation of S, , to zero energy. Upper data set is from Kava-
nagh et al. (1969); lower is from Filippone et al. (1983). The solid lines are
calculated using the Hasegawa-Nagata interaction; the dashed lines are calcu-
lated using the Minnesota interaction. The error bars do not include the
systematic error from uncertainty in 6,,.
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(1970) using either Kav69 or Fil83 for the three “ high-energy » L

experiments were consistent within 4%, 3%, and 7%, respec- 0 20 - ’b4§’ 60
. o [ eV

tively.

Before presenting our results, we comment on the nor-
malization of the data. Most of the experimental cross-
sections were normalized using the broad 0.77 MeV resonance
in "Li(d, p)®Li. The measured value of 6,4, range from 138 to
211 mbarns (see Filippone 1986). We use the currently adopted
value of 157 + 10 mbarns.

Another method of normalization is via direct measurement
of "Be activity. Wiezorek et al. (1977) used only this method.
Note that while the extrapolated value from their experiment,
which measured the (p, y) cross-section at only energy, is nearly
twice that of all other experiments, because of the large error
bars this experiment has a nearly negligible effect on our
results. Filippone et al. (1983) used both ¢, and "Be activity to
normalize their cross-sections and found consistent results
within their uncertainties. Following Parker (1986) we normal-
ize Fil83, and the remaining four experiments, with a4, = 157
+ 10 mbars.

In Table 3 we give our extrapolated values of S, ,(0) for each
of the six experiments, as well as the previously adopted
extrapolations (Filippone 1986; Parker 1986). The “ theoretical
uncertainty,” that is, the difference between using the energy-
dependence calculated using the Minnesota or Hasegawa-
Nagata force, was less than 2%. Our new values were
consistently lower than those of previous extrapolations by up
to 10%. (The extrapolated value of Kavanagh [1960] did not
change, but this is likely due to rounding off to two digits.)

The six experimental values of S,,(0) in Table 3 were aver-
aged in two different ways, both of which gave the same result
0of 0.0224 keV barn . The first was a simple weighted average.
The combined uncertainty is then calculated as 0.0013 keV
barn~!. However, y2/(N — 1), where the number of experi-
ments, N, is 2.1, implying that the error bars on some or all of
the experiments were underestimated. Following accepted
practice (see, e.g., section IV.C.2 of Particle Data Group 1990),
we multiply ¢ by /x?/(N — 1) and obtain an uncertainty of
o =0.0019 keV barn L.

This analysis ignores the fact that all but one experiment was
normalized by 6,, = 157 + 10 mbarns; this contribution to the
uncertainty should be treated as an overall systematic uncer-
tainty and should not be used while averaging the experiments.
For our second analysis we ignored the experiment of Wiezo-
rek et al. (1977), which was normalized by "Be activity, and
performed a weighted average of the remaining five experi-
ments, using, however, uncertainties calculated without Acy,.
The result was 0.0224 + 0.0010 keV bar with ¥? = 8.5; multi-

FiG. 3.—Ideogram of the extrapolated measurements of S,,(0). Each
experiment is represented by a Gaussian with width ¢ (shown also as the error
bars) and with area proportional to 1/o. Vertical line is adopted value of
S,;=224eVbarn~!,

plying the uncertainty by ./x2/N — 1 yields 0.0016 which then
is combined, in quadrature, with the 6.4% © systematic ” uncer-
tainty in g, to obtain 0.0021. We adopt this latter, more con-
servative uncertainty.

To illustrate the uncertainties, we present in Figure 3 an
ideogram of the values of S, ;(0) extrapolated from each experi-
ment, expressed as a Gaussian with width ¢ and total area
proportional to 1/g (see Particle Data Group 1990).

In summary, then, our final result is S,;,(0) = 0.0224
+0.0021 barn~'. This corresponds to a 3 ¢ uncertainty of
28%. The “theoretical uncertainty” we have argued is quite
small, and we believe that our quoted uncertainty accurately
reflects uncertainties in the experiments themselves as well as
uncertainty in g,,.

Some authors have advocated even lower values of S,,.
Turck-Chieze et al. (1988) adopt a value of 0.0209 keV barn ™1,
by reducing the previously adopted value of S, by 15% to
adjust for d-wave capture, following a statement of Filippone
et al. (1983) that inclusion of d-wave capture reduces S,, by
10%-15%. We find inclusion of d-wave capture only reduces
extrapolated S;; by 10% or less. Barker & Spear (1986)
propose a greater reduction in S;,(0) to 0.017 keV barn~1.
They discard Kavanagh et al. (1969) and Parker (1968), include
d-wave capture, and finally advocate a significantly lower value
of 6,,. While one might exclude the experiment of Wiezorek et
al. (1977) as being spurious—and we in fact found it made no
difference in the final result—clearly Parker (1968) and Kava-
nagh et al. (1969) are consistent with each other and should not
be excluded. For reasons discussed in the second paragraph of
this section, we do not use a lower Oype

4. CONCLUSION

We have reexamined the two nuclear processes determining
the fate of "Be (and hence the production of 8B) in the Sun. For
the dominant electron capture reaction that makes ’Be
unavailable for transmutation into ®B, we have carefully recon-
sidered the approximations that go into computing the elec-
tron density and performed a self-consistent, thermal Hartree
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calculation. The net increase in the solar rate for this process
relative to previous calculations is small. For the proton-
capture reaction, which produces the 8B and thus the high-
energy neutrinos seen (or rather not seen!) in terrestrial
detectors, we have performed a microscopic cluster calculation
of the energy dependence of the astrophysical S-factor that
includes capture from d-waves. Our extrapolations of the
experimental data using all six experiments decreases the
proton capture rate, and hence the 8B neutrino flux, is from the
currently accepted value by about 7%. While not insignificant,
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this reduction is still far from explaining the solar neutrino
“problem.”
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