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ABSTRACT
The exact ionization state of 7Be in the solar core is crucial for the precise prediction of the
solar 8B neutrino flux. We therefore examine the effect of pressure ionization on the ionization
state of 7Be and all elements with 12 � Z � 4. We show that under the conditions prevailing in
the solar core one has to consider the effect of the nearest neighbour on the electronic structure
of a given ion. To this goal, we first solve the Schrödinger and then the Kohn–Sham equations
for an ion immersed in a dense plasma under conditions for which the mean interparticle
distance is smaller than the Debye radius. The question of which boundary conditions should
be imposed on the wavefunction is discussed, examined and found to be crucial.

Contrary to previous estimates showing that beryllium is partially ionized, we find that it
is fully ionized. As a consequence, the predicted rate of the 7Be + e− reaction is reduced by
20–30 per cent, depending on the details of the solar model. Because 7Be is a trace element,
its total production is controlled by the unchanged 4He +3 He reaction rate, and its destruction
is determined by the rate of electron capture. As the latter rate decreases when the beryllium
is fully ionized (relative to the case of partially ionized Be), the estimate for the abundance of
7Be increases and with it the 8B neutrino flux. The increase in φν(8B) is by about 20–30 per
cent. The neutrino flux due to 7Be electron capture remains effectively unchanged because the
change in the rate is compensated for by a change in the abundance. Hence the prediction for
the ratio of φν(8B)/φν(7Be) changes as well.
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1 I N T RO D U C T I O N

Classical calculations of solar models assume that all species irre-
spective of their ionization potentials are fully ionized above ∼106 K
(e.g. Bahcall & Pinsonneault 1992; Castellani et al. 1997). The main
reason for assuming complete ionization above ∼106 K is proba-
bly to save of computer time, because detailed ionization calcula-
tions are very CPU-demanding. However, as the charge of the ion
increases, the ionization potential of the high ionization states in-
creases faster, reaching eventually the state where the specie is not
fully ionized. The justification for the assumption that all species are
fully ionized is the small amount of the heavy elements and hence
the small contribution to the total pressure.

Alternatively, one can use tables for the equations of state which
are calculated to high accuracy and which include therefore the
accurate ionization state of all species. However, one then has to
interpolate for the relative abundances which change continuously
once diffusion takes place. Indeed, from the point of view of the
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total gas pressure and other thermodynamic quantities, the partial
(or complete) ionization of heavy species like C, N, O, or Mg affect
the number of free electrons at temperatures above a few million
degrees at a relative level of about 10−3, depending on the exact mass
fraction of the heavy elements. Consequently, the total pressure and
speed of sound are affected at the same relative level of accuracy.
Note that the ionization of the K shell behaves like 13.6 Z 2 eV and
the temperature in the centre of the Sun is 1.4 keV.

Iben, Kalata & Schwartz (1967, hereafter IKS67) examined the
ionization state of 7Be in the solar core, and concluded that its
K-shell electrons are partially bound (with a population level of
about 30 per cent depending on the exact location in the core). This
fact significantly affects the predicted 8B neutrino flux from the Sun.
The most important channel for the destruction of 7Be in the Sun
is via electron capture, of which most are free electrons. However,
if the 7Be ion has some bound electrons then the rate of electron
capture is enhanced, and with it the generated 7Be electron capture
neutrino flux (by about 20–30 per cent once averaged over the entire
relevant region in the Sun). Thus, the exact occupation fraction of
the 7Be K-shell is important for the accurate prediction of the solar
neutrino flux, and the ratio φν(8B)/φν(7Be) in particular. To include
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the effects of the plasma, IKS67 assumed a Debye Hückel (DH)
potential and calculated the dependence of the ground state energy
on the environmental conditions.

The problem of obtaining the ionization state of beryllium in
the Sun was later revisited by Johnson et al. (1992). The authors
analysed the validity of the DH potential and found that the pre-
requisites for the validity of the potential are weakly violated. The
authors claim that once the assumptions for the validity of the DH
potential are strongly violated, ‘experiments show that the DH fails
dramatically’. In particular, we note the first point raised by the au-
thors, namely the requirement to have many particles in a Debye
sphere needed for the validity of the DH treatment. This require-
ment implies that the interparticle distance is significantly smaller
than the Debye radius. The authors solve for the beryllium atom
assuming a DH potential using three different methods (DH, self-
consistent DH and Hartree) and find only small differences in the
ionization compared to IKS67.

Gruzinov & Bahcall (1997) discussed the ionization state of beryl-
lium in the Sun assuming mean field screening, the density matrix
formulation, and a Monte Carlo method. However, all were within
the framework of a screened Coulomb potential. The authors also
discussed the effects of fluctuations and found only minor effects.

If indeed beryllium is partially ionized in the solar core, namely, it
keeps the K-shell electrons at least part of the time, then several ad-
ditional consequences follow. These effects were hitherto neglected
in the prediction of the solar neutrino fluxes (predictions that as-
sumed at the same time partial ionization of 7Be and full ionization
of all species heavier than carbon).

First, the screening of the nuclear reaction 7Be + p, which is the
competing 7Be destruction reaction, should be calculated using the
proper effective charge of the Be ion. If beryllium is fully ionized
it has a charge of +4e, while if it is partially ionized the bound
electron contributes to the screening. This effect would decrease
the 8B neutrino flux. (The screening correction increases with the
effective nuclear charge.)

Secondly, a similar correction to the screening should apply to
the higher Z reactions of CNO + p, affecting in this way the (small)
contribution of the CNO cycle to the total solar energy budget. This
effect would suppress the CNO energy production because the ef-
fective charge of the ion would be smaller and hence the electrostatic
screening energy would be smaller as well.

Thirdly, the exact point at which various ions become completely
ionized affects the entropy density in the outer convective zone of
the Sun, and with it the solar structure.

As the accurate prediction of the solar neutrino flux is so impor-
tant, the purpose of this contribution is to re-examine the ionization
state of the heavy species in the solar core, and in particular the
ionization state of the trace element 7Be.

The question of to what extent does the 7Be, or any other heavy
ion, retain its K-shell electrons is usually analysed in two steps
(IKS67). The first step is to apply the simple Saha equation assuming
that the structure of the 7Be atomic energy levels is unaffected by
the dense plasma. The second step is to account for the effect of the
plasma on the energy levels of the 7Be by assuming a smooth DH
potential and calculating the energy levels under the DH potential.
Once the new energy levels are known, the electron population in the
levels can be re-evaluated using a Saha equation which incorporates
the revised energy levels. This approach is justified only as long as
the plasma effects are small perturbations.

As we shall show, the conditions in the core of the Sun are very
peculiar, and the number of particles inside a Debye sphere N D ≈
few and are not very large compared to unity. Hence, the necessary

condition for the validity of the DH theory is not satisfied. Moreover,
the conditions in the core of the Sun are such that the mean distance
between ions in general, 〈r s〉 = (4πn/3)−1/3, and between a proton
or an α-particle and a beryllium ion in particular, is of the order
of 2RB(Z = 4) (the Bohr radius in a nucleus with charge Z = 4)
and hence the picture of an ion with an electronic shell inside a
DH potential is not strictly valid. Here, n is the number density
of ions, while the index ‘s’ in 〈r s〉 corresponds to a calculation
employing spherical packing of ions. When the DH theory applies,
it means that there are many ions inside a Debye radius and that
the mean distance between the ions is much smaller than the Debye
radius. The electronic structure of the ions is then affected first and
foremost by the close ion rather than by the Debye cloud and its large
radius. This point, which is essential in this paper, will be discussed
at length, as this situation dictates a different boundary condition
which subsequently leads to different energy levels and a different
ionization state (under the same thermodynamic conditions).

The paper is structured as follows. We first question and analyse
the effective potential to be used under the conditions prevailing in
the solar core. Then we repeat the two steps analysis of IKS67. We
next proceed to examine the pressure ionization at T = 0 assuming
a Coulomb potential. In view of the doubtful validity of the DH
potential under the conditions prevailing in the core of the Sun, we
repeat the calculation assuming the Schrödinger and later the Kohn–
Sham equations. We find that 7Be is fully ionized at a lower density
(and temperature) than previously calculated. Finally, we examine
the effect of the complete ionization of 7Be on the predicted solar
neutrino flux according to different sets of nuclear reaction cross-
sections.

2 W H I C H P OT E N T I A L ?

The classical calculation of the atomic energy levels and pressure
ionization assumes a smooth potential (in time and space). We first
examine the assumption that any applied potential can be assumed
to be a smooth one for the specific problem of the structure of the
electronic level of a given ion under the conditions prevailing in the
core of the Sun.

For the assumption that the potential is smooth to be valid, the
fluctuations of the plasma must be much faster than the motion of
the electron in the bound orbit, so that the average smooth value
can be taken (for the calculation of the bound state) rather than the
instantaneous one. We assume at the beginning that the plasma does
not affect the energies of the bound levels. (The effect of the plasma
is to make the energy levels shallower so the electrons would move
even slower. Thus, the argument presented here is a conservative
one.)

The Bohr radius in a hydrogen-like ion with a charge Z (in vac-
uum) is given by:

a0 = h2

4π2mee2 Z
= 1

Z
0.528 × 10−8 cm. (1)

The classical velocity is:

v = 2Ze2

(
π

h-

)1/2

, (2)

and the period is

P = h3

4π2mee4 Z
. (3)
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There are two sources for the fluctuations in the potential; those
caused by the protons and those caused by the electrons. The typical
time-scales of the fluctuations are

τe = 〈rs〉
vth(Z ND)1/2

= 〈rs〉m1/2
e

(3kT )1/2(Z ND)1/2
(4)

τp = 〈rs〉
vth N 1/2

D

= 〈rs〉m1/2
p

(3kT )1/2 N 1/2
D

, (5)

where 〈r s〉 = 1/(4πnion/3)1/3 is the mean interparticle distance and
nion is the number density of ions. vth is the relevant thermal velocity.
The number of particles in the Debye sphere is given by:

ND = 4π

3
R3

D, (6)

where

RD =
√

kT

4πe2
∑

j

(
Z 2

j + Z j

)
n j

(7)

is the Debye radius for this mixture. nj is the number density of
specie j with charge Zj. The above expression for the Debye radius
assumes that both the electrons and ions contribute to the supposedly
DH potential. For simplicity we assume N 1/2

D ≈ 3 and obtain that,
for n = 1026 cm−3, T = 1.5 × 107 K and a pure hydrogen plasma,

P

τe
≈ 0.5 and

P

τp
≈ 0.01. (8)

Note that when some of the ions are helium ions (in the core of
the present Sun about half the ions are He), N D decreases even
more. What is the implication of this result? The fluctuations due
to the electrons are of about the same time-scale as the period of
the electrons in the K-shell in a single ion in vacuum, while the
protons in the plasma have a much longer time-scale. Hence, it is
not justified to treat the contribution of the electrons to the DH
potential (felt by the electron) as a smooth potential in time. On
the other hand, as there are only few protons in the Debye radius,
their contribution to the potential is smooth in time but not in space
and certainly not spherical. Additional arguments that question the
validity of the potential are given by Johnson et al. (1992). In what
follows, we assume that all potentials are temporally smooth and
spatially spherical.

3 T H E I O N I Z AT I O N O F B E RY L L I U M
I N T H E S U N

3.1 The state of ionization ignoring plasma effects

Next, we discuss the ionization state of 7Be in the core of the Sun –
the classical way. If one adopts the Saha equation, ignoring screening
and the excited energy levels (thus including only the ground states
in the partition functions), then the probabilities f 1 and f 2 that one
or two K-shell electrons are associated with any given 7Be nucleus
are given by (IKS67)

f1 = η

1 + η + 0.25η2 exp(−δχ/kT )
,

f2 = 0.25η exp(−δχ/kT ) f1,

(9)

where

η = ne

(
h2

2πmkT

)3/2

exp(χ1/kT ). (10)

Here χ1 = 216.6 eV is the forth ionization potential of the 7Be
atom, χ 2 = 153.1 eV is the third ionization potential of the 7Be
atom, and �χ = χ 1 − χ2 = 63.5 eV. These values correspond
to the limit of vanishing plasma density. ne is the number density
of the free electrons, most of which are contributed by hydrogen
and helium and are independent of the state of trace elements like
beryllium. Thus, ne can be treated as fixed.

The application of the Saha equation in the above form to the
core of the Sun (ρ = 158 g cm−3, T = 1.57 × 107 K, X = 0.36 and
Z = 0.02) yields f 1 = 0.320 and f 2 = 0.038, implying that the 7Be
keeps its last electron for about a third of the time.

As the relevant ions are in a plasma, the traditional procedure to
correct for the plasma effect is to replace the pure Coulomb potential
with a DH one (Rogers, Graboske & Harwood 1970). This is for
example the procedure IKS67 evaluated the plasma corrections for
the energy levels of 7Be in the solar core.

The Saha equation in the above form ignores electron degeneracy,
exchange effects and pressure ionization. The electron degeneracy
introduces a small correction under the conditions prevailing in the
Sun. As we will shortly demonstrate, exchange and pressure ioniza-
tion are significantly more important. In what follows we do assume,
in spite of the previous reservations, a smooth static DH potential
contributed by the electrons and ions. Moreover, we assume it to be
relevant in a statistical sense only.

3.2 Screened potential: taking into account the plasma effects

After performing the above estimate, IKS67 turned to evaluating
the ground state of the Z = 4 ion, assuming a smooth DH screened
potential in which both the protons and the electrons are taken into
account. We ignored the questions raised in the previous section
concerning the validity of the potential for our particular purpose
here (ionization in the core of the Sun), repeated their calculation
and confirmed their results with respect to the hydrogen-like ion
with Z = 4. Rogers et al. (1970) calculated the bound states of
static screened Coulomb potential and formulated their results in
terms of the screening length. We also repeated their calculation for
the 1s state and the results are shown in Fig. 1. Clearly, as the Debye
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Figure 1. The energy of the ground state for a screened Coulomb po-
tential as a function of the screening length. Note the units of the energy
(Z2 ERydberg) and Debye length scale [RD/RB(Z )] where RB(Z ) is the Bohr
radius of an ion with charge Z.
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Figure 2. The run of the ground energy levels of a Be ion with one and
two electrons as a function of density for a Debye Hückel potential and with
ψ(r → ∞) = 0 as the boundary condition. The temperature, which enters
via the Debye radius, is taken as constant at 1.57 × 107 K. Note that the
temperature in the Sun decreases with density, and hence the temperature,
and with it the Debye radius, are overestimated here for densities lower
than 150 g cm−3. The correction for the accurate temperature is small. The
purpose of the figure is to show that under the prevailing conditions in the
solar core the beryllium level is marginally bound. The small arrow marks
the density at the core.

length approaches the Bohr radius of ions with charge Z, there are
no more bound states. The boundary conditions on the wavefunction
in this case is ψ(r → ∞) = 0.

The calculation of the plasma effects on the triply ionized 7Be
ion is more complicated because of the partial screening of the nu-
cleus by the bound electron. To overcome this problem, we used
the following approximate method. We looked for the eigenvalue
in the low density limit and searched for the effective charge that
will reproduce the measured ionization potential of 153.1 eV. We
found that this charge is Z = 3.3544. We then repeated the calcula-
tion of the plasma effect on the bound states assuming this charge.
The results are shown in Fig. 2. We then used the new values for
the ionization potential in the Saha equation to find the revised f 1

and f 2. The comparison between the values used with and without
the plasma correction are shown in Fig. 3, where the actual run of
the occupation numbers in the Sun is given. It is surprising that the
differences in the ionization come out to be quite small.

The particular results for the binding energy (calculated for a DH
potential) as a function of the density are shown again in Fig. 4,
along with the run of the ratios RD/RB(Z = 4) and 〈r s〉/RB(Z = 4).
The Debye radius and the mean interparticle distance are calculated
assuming X = 0.34, Y = 0.68 and Z = 0.02, a composition which
is close to the one at the solar core today.

We notice that when the density approaches the density in the
solar core, namely about 150 g cm−3, the following occur. (i) The
Debye radius becomes of the order of the mean interparticle distance
and hence the approximation of a smooth Debye screened potential
loses its validity, emphasizing once more the conclusion reached in
Section 2. (ii) In the solar core, we find that RD ≈ RB(Z = 4) and
therefore the probability for complete ionization of the Be is very
high.

However, the more important question here is the ratio of the mean
interparticle distance to the Bohr radius, because we are interested in
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the possibility that the ions of beryllium still have bound electrons.
The graph for the value of 〈r s〉 indicates that at the centre of the
Sun it is close to RB(Z = 4). Therefore, it is a delicate question
whether the beryllium ions possess any bound electrons. Finally,
we point out that 〈r s〉, which is depicted in Fig. 4, is the mean
interparticle distance irrespective of their type. As we shall show,
it is an underestimate in the case of a beryllium ion embedded in
hydrogen and helium ions.
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4 P R E S S U R E I O N I Z AT I O N AT T = 0

4.1 The boundary conditions

As discussed above, the classical method to evaluate the degree
of ionization in a stellar plasma with a finite temperature is first to
assume given mean distances between the particles, and assume that
they are at rest, namely that T = 0. (However, we do keep the finite
temperature in the calculation of the Debye radius.) Once the energy
levels are known, the effect of the temperature via the Boltzmann
relation (leading to the Saha equation) is taken into account. In an
actual plasma, the distance between the particles has a distribution
and hence there is a distribution of cases. One assumes that the
average of the results for the distribution is equal to the result for
the average. We turn now to the T = 0 case.

The question of pressure ionization is discussed by Chiu & Ng
(1999) within a general discussion about the energy levels of atoms
in plasma and follows Roussel & O’Connell (1974) and Rogers
et al. (1970), where the effect of the plasma was simulated by a
screened potential. Pressure ionization depends primarily on the
density. However, when the relevant scale is the Debye length, some
effect of the temperature on the energy levels enters through the back
door via the dependence of the Debye screening length on the tem-
perature, which, as stated before, we do keep finite in the calculation
of the potential (in the case that a DH potential is assumed).

We distinguish between two possible situations:

Case A: RD � 〈r s〉 or ND � 1 and
Case B: RD � 〈r s〉 or ND � 1.

The physical difference between the two cases is expressed in the
boundary conditions imposed on the wavefunction in the problem of
the electronic structure of the ion. In Case A, the nearest neighbour
is closer than the Debye distance and hence one expects it to affect
the electronic structure of the ion much more than the fact that the
two ions are inside the same potential well. In Case B, the nearest
neighbour is further away than the Debye radius and hence the
boundary condition on the wavefunction with a DH potential can
be ψ(r → ∞) = 0. On the other hand, in Case A the boundary
condition should take into account the close ion. As the speed of
the perturbing ions is of the same order as the speed of the ion
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under consideration, the effect of the ions inside the Debye sphere
cannot be averaged into a mean potential. The basic requirement of
considering the effect of the nearest neighbour directly (and not via
a smooth potential averaged over many ions) leads to the idea of a
Wigner–Seitz unit cell or ion-sphere.

We can look also on the problem in the following way: if the bound
state electronic wavefunction of a given ion overlaps significantly,
the bound electronic wavefunction of nearby ions the electron cannot
be considered as bound (cf. Murillo & Weisheit 1998).

We approached the problem of pressure ionization at T = 0 in two
steps that represent successive approximations. In the first step we
solve the Schrödinger equation for the 7Be ion under the assumption
that there is another nucleus at a distance 〈r s〉 away. In our particular
case, the plasma contains ions with different charges and one cannot
state that the ion sphere of all ions is identical. Hence, the boundary
condition must be imposed at 〈r z〉 = α〈r s〉, where α is soon to be
determined. In the pure periodic case one should apply the Bloch
condition (Marder 2000, see also Lai, Abrahams & Shapiro 1991).
We assume for simplicity spherical symmetry and hence the Bloch
condition becomes the requirement that

dψ

dr

∣∣∣∣
r=α〈rs〉

= 0. (11)

The coefficient α is determined from the condition that the force
vanishes at this point. Consequently, all wavefunctions we exper-
imented with contained the condition that ψ ′ vanishes at 〈rZ〉 =
α〈r s〉, namely they contained the factor (r − α〈r s〉)2. Here 〈r s〉 is
the distance to the nearest ion irrespective of its charge (in spherical
packing). Note that in the Sun 7Be is a trace element and hence
the nearest neighbour would most probably be a proton or a helium
nucleus. The approximation can be considered as a muffin-tin po-
tential with a modified cell size, namely Coulomb inside 〈rZ〉 and
constant outside (cf. Lai et al. 1991). It is obvious that imposing
the above condition on the trial function increases the eigenvalue
and hence ionization would occur, assuming all other conditions are
unchanged, at a lower density.

Because we have a mixture of various ions, the point at which the
force between ions vanishes varies with the ion in question. If our
ion has a charge Z, then the corresponding ionic radius 〈rZ〉 is given
by:

〈rZ 〉 = δ

1 + δ
〈rs〉, where δ =

(
Z

∑
Xi Zi/Ai∑
Xi/Ai

)1/2

. (12)

If all ions are equal, then 〈rZ〉 = (1/2)〈r s〉. Clearly, the above defini-
tion is a generalization of the Wigner–Seitz cell idea to a mixture of
species. In the present case, we assume the electron to be localized
in the Wigner–Seitz cell. We will define complete ionization when
the localization of the electron ceases. In the DH case, there is no
such assumption. Nevertheless, there are other ions (and electrons)
moving inside the Bohr radius.

The relation of 〈rZ〉 or 〈r s〉 to RD is interesting. The condition
〈r s〉 = RD can be written as

ρcrit(g cm−3) = 1.57(1 + 3X )2

(
T6

3 + X

)3

. (13)

For densities below the critical density, the mean interparticle dis-
tance is smaller than the Debye radius. Hence, when analysing
the possibility that an ion carries a bound electron, the Debye
length is not relevant. In Fig. 5 the run of the temperature and
density in the Sun is shown as a function of the solar radius.
Also shown are the mean interparticle distance and the Debye ra-
dius. In Fig. 6 we show the run of the density and temperature
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in the Sun along with the critical density (calculated for the ac-
tual temperature and composition). Also shown are the domains of
RD = 〈r s〉 for three values of the hydrogen mass fraction; 0.35, 0.5
and 0.7. One finds that through most of the volume of the Sun, the
density is always below the critical one and hence the analysis of the
structure of the electronic levels must take into account the nearby
ion rather than the Debye radius. Only close to the surface does the
situation change; the Debye radius becomes smaller than the mean
interparticle distance and the critical density becomes smaller than
the actual density.

When one evaluates the pressure ionization for metals at T =
0, one assumes the Wigner–Seitz cell. The rational for using the
Wigner–Seitz cell at higher temperatures is the fact that the speed
of the electron in the bound state is so much greater than the speed
of the ions, so the ions can be assumed to be at rest. The use of
the ion sphere for opacity calculations was examined by Rozsnyai
(1992).

4.2 Schrödinger equation with Coulomb potential

We used the variational principle method and two types of trial
functions. The first type is taken from Roussel & O’Connell (1974),
namely a polynomial in r times an exponential function (the simple
bound s-state), while the second type is a Padé approximation.

The results for hydrogen obtained using the two types of trial
functions are compared and found to be practically the same to with
in a relative accuracy of 10−2 or better. Additional trials with other
functions and parameters did not improve the results beyond the
second significant digit.

Interestingly, with our definition of 〈rZ〉, the energy level is only a
function of 〈rZ〉/RB(Z ) and it is shown in Fig. 7. Complete pressure
ionization is found to occur at 〈rZ〉 = 1.945RB(Z ) irrespective of Z.
To obtain the results for a particular ion, one has to find its 〈rZ〉 for
the composition, temperature and density under consideration. The
results for T = 0 are shown in Fig. 8. We stress that these results
are obtained for T = 0 and do not depend on the Debye radius (and
hence do not depend on the temperature indirectly). We conclude
that neither 20Ne, nor species with a higher Z, are fully ionized in
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Figure 7. The energy of the ground state of an ions with charge Z immersed
in a plasma inside a unit cell of size 〈rZ〉.

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.0001 0.001 0.01 0.1 1 10 100 1000

E
gr

ou
nd

/(
Z

2  
E

R
yd

be
rg

)

Density (g cm-3)

Z=1

Z=4

Z=6

Z=7

Z=12

Coulomb potential

′ ψ = 0

Schrodinger eq.
..

Figure 8. The translation of the previous figure to the density dependence
of the energy levels of various species. All calculations assume that the
Z �= 1 ions are trace elements. The effect of the environment on the merging
into the continuum of the ground state takes place over a factor of 10 in
density.

the solar core (and vice versa; species with a lower Z are not fully
ionized).

The above results are easily translated into the conditions in the
Sun. In Fig. 9, we plot the run of the ground state binding energy of
7Be throughout the Sun. This calculation indicates that beryllium is
fully ionized in the Sun below a solar mass fraction of 0.66.

The critical densities for the disappearance of the bound state
in the corresponding hydrogen like ions are given in Table 1. At
a finite temperature, complete ionization takes places at somewhat
lower densities because the temperature increases the excitation and
with it the probability of ionization.

We conclude that the densities at which full ionization of 7Be
takes place are significantly lower than those found in the solar
core. Thus, the small inaccuracies in the present estimate have no
practical effect on the state of beryllium in the solar core. The effect
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Table 1. The critical density and the radius of the atomic cell for
the vanishing of a bound state in hydrogen-like ions.

Ion ρcrit(Coul) 〈rZ〉 ρcrit(KS) 〈rZ〉
units g cm−3 RB(Z ) g cm−3 RB(Z )

Be7 16.33 1.921 36.18 1.474
C12 65.25 1.923 86.25 1.752
N14 110 1.922 132.5 1.806
O16 171 1.927 196.5 1.840
Mg24 660 1.925 698.8 1.890

on the entropy density of the envelope is yet another issue, and it
will be discussed elsewhere.

4.3 A screened potential?

The Schrödinger equation was solved using the simple Coulomb
potential and not with the Debye screened potential. However, elec-
tron screening does take place and cannot be ignored. Should the
Debye screened potential be used? Suppose that RD � 〈r s〉 (which
is not the case in the Sun), namely there are many particles in the
Debye sphere. The Debye sphere contains electrons and ions, hence
under these conditions there are ions which are closer to the spe-
cific ion than the Debye radius. These ions disturb the given ion and
one should look for the bound level under these conditions, namely
that there is another ion close by. This is exactly what has been
done above. Thus, when the Debye radius is very large relative to
the mean interparticle distance, it creates a constant potential at the
location of the two close particles and the effect is a shift in the
energy and pressure ionization of the very high energy levels. On
the other hand, when RD ≈ 〈r s〉, the Debye length and potential
lose their meaning. This is exactly the situation in the solar core. A
full treatment of this limit which incorporates a Debye (or a more
accurate) potential would have led to still lower densities for the
disappearance of the bound state.

4.4 The Kohn–Sham equation

There are two major deficiencies in the above treatment. The first
one was discussed at length and has to do with the doubtful validity

of the Debye potential under solar conditions and for the question
of beryllium pressure ionization. A possible way to overcome this
problem is to use a density functional (cf. Dharma-Wardana & Perrot
1982, where it is applied to hydrogen plasma and where bound states
are found). The second deficiency is the neglect of the free electrons
and their effect on the screening of the nucleus, correlations and
exchange. We therefore resorted to the Kohn–Sham equation (Kohn
& Sham 1965), in which these deficiencies are taken care of, for
finding the density at which pressure ionization takes place. The
Kohn–Sham equation takes the N electron wavefunction and treats
it as a collection of single particle eigenfunctions. The governing
equation of the Kohn–Sham (KS) density functional method is then:

− h- 2

2m
∇2ψl (r ) +

{
− Ze

r
+ e2

∫
dr ′ n(r ′)∣∣r − r ′

∣∣−
[

3

π
n(r )

]1/3
}

ψl (r )

= Elψl (r ) (14)

where n(r ) is the electron density and ψ l is the single electron
wavefunction. The Kohn–Sham equation (hereafter KS equation)
has additional merits (Marder 2000). The major problem with the
Thomas Fermi equation is that high densities do not necessarily
lead to high kinetic energies for the electrons. This problem is cured
in the above KS equation. There are more merits of using the KS
equation in our particular problem. In the Hartree–Fock approach,
the many-body wavefunction in form of a Slater determinant plays
the key role in the theory. The Hartree–Fock equation, if derived by
minimization of the total energy, is expressed by a determinant of
wavefunctions which is extremely difficult to handle. In the density
functional theory the key role is played by the observed quantity;
the electron density. The Hohenberg–Kohn theorem then shows that
for ground states the density functional theory possess an exact
energy functional and there exists a variational principle for the
electron density. The KS equation is then an effective one electron
equation where the exchange operator in the Hartree–Fock equation
is replaced by an exchange-correlation operator that depends only
on the electron density. This is exactly what is needed in the present
problem. The KS equation then treats the N electron problem as
single electron wavefunctions.

Let n(r ) = ∑N
l=1 |ψl (r )|2, where the summation is carried over all

electrons, be the electron density. In our particular case, we examine
the bound state of Be (Z = 4) (as well as that of the higher Z trace
species such as C, N, etc.). The Be is a trace element immersed in a
plasma of fully ionized hydrogen and helium (mostly) and negligible
amounts of heavy elements. Hence, the major contribution to the
electron density comes from the electrons contributed by hydrogen
and helium and to a smaller extent by the outer electrons of the
metals. This term is essentially given by the environment in which
the trace specie is immersed. Returning to the KS equation, the third
term in the KS equation is the mutual electron–electron interaction
between the bound electron and the free electrons that exist inside
the ‘effective orbit’, and it provides the effective electron screening
of the ion. It is easy to estimate when this term becomes important.
The number of free electrons per Bohr radius, N B, is given by:

NB � 6.16 × 10−25

Z 3
ne (15)

This term becomes important for N B ∼ 1 or ne � 1.623 × 1024 Z 3.
The forth term is the exchange, which is given by ∂ E ex/∂n, where
E ex is the exchange energy. Because of its unique properties, the KS
equation gained popularity with physical chemists. The accuracy of
using the KS equation for the calculation of ionization potentials in
molecules is described in Curtiss et al. (1998). As a rule, the results
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Figure 10. A comparison between the muffin-tin models employing the
Schrödinger and the Kohn–Sham equations. Also shown is the radius of the
atomic cell rZ in units of the Bohr radius for a hydrogen-like ion with
Z = 4 treated as a trace element. The ground state energy level varies
almost linearly with the density when close to the complete ionization
density.

of the KS equation are more accurate than those obtained from
the Hartree–Fock approximation and reach the accuracy required
by quantum chemists. The implementation of the KS equation in
astrophysics of dense matter is described for the first time by Lai
et al. (1991).

We solved for the eigenvalue of the KS equation assuming the
composition of the present solar core. We used a variational princi-
ple with several trial functions because we are mostly interested in
the eigenvalues and not in the wavefunctions. The results for Be7 are
shown in Fig. 10 along with the results for the Coulomb potential
(and the same boundary condition). It appears that the correlations
and exchange terms in the KS equation contribute to the further
suppression of the energy level and complete ionization occurs à
la KS at a higher density. Note that for sufficiently low densities,
the KS predicts significant lowering of the ground state of a trace
element relative to the continuum. This is a consequence of the ex-
change term which is mostly contributed by hydrogen and helium
and not by the electrons of the trace ion under consideration. The
phenomenon does not occur for species which are not trace elements
(see later). The results with different trial functions vary a bit and the
best (lowest) results are shown. The critical densities and 〈rZ〉 as ob-
tained in the two approximations are compared in Table 1. From the
table we see that in the Schrödinger approximation 〈rZ〉 is constant,
whereas in the KS equation it varies and increases with the charge
of the ion. A good fit for the value of the critical 〈rZ〉 over this range
of charges is rZ/Z = 0.451–0.026Z . This expression can be easily
translated into a term added to the free energy so as to secure pressure
ionization.

Based on the KS equation, we find that the CNO elements are fully
ionized in the core of the Sun. Indeed, at T = 0 the oxygen still has a
bound electron at the densities of the solar core, but the low binding
energy and the high temperature impose complete ionization under
the conditions in the centre of the Sun. On the other hand, species
with Z � 10, such as neon and iron, still keep their K-shell electrons.
Assuming that all species heavier or equal to Ne are fully ionized
introduces a relative error of the order of �Z [1 − X (C) − X (N) −
X (O)]/10, or about 10−3 in the pressure and speed of sound.

4.5 The effect of the boundary condition
in the Kohn–Sham equation

The effect of the boundary condition on the result can be seen in
the following way. We solved the KS equation under the condition
ψ(r → ∞) = 0 for various densities. The result is that as the density
increases monotonically, the first bound state becomes monotoni-
cally more bound and pressure ionization never occurs. The free
electrons are able to prevent ionization exactly as the Saha equation
with electron degeneracy yields that recombination increases as the
density increases.

4.6 Metallic beryllium

Perrot (1990) applied the Neutral-Pseudo Atom (NPA) method to
evaluate the equation of state and the degree of ionization of pure
Be metal under normal conditions (ρ = 1.85 g cm−3 and T = 0)
and at high densities, keeping T = 0. The results are not directly
applicable to the Sun because Perrot discusses pure metallic beryl-
lium while we are interested in a trace Be atom embedded in a sea of
protons and α particles. Yet the results are instructive for the com-
parison of the present method with others, especially because they
serve as a consistency check. The applicability of the NPA method
(Perrot 1990) is limited to compression ratios c below 40 (see fig. 5
in Perrot 1990 and the explanation therein) while Be becomes fully
ionized at a compression ratio of c = 50. At high compressions,
band calculations show that the gap between the 1s band and the
upper one closes (Meyer-Ter-Vehn & Zittel 1988). The normal den-
sity of beryllium is 1.85 g cm−3 and hence a compression ratio of
50 corresponds to a density of 92.5 g cm−3. Consequently, metallic
beryllium is fully pressure ionized at T = 0 and a density of 92.5 g
cm−3. Perrot (1990) presents an extrapolation between the end point
of his results (c = 40) and the band calculations (c = 50).

We note that when the density or temperature (or both) are in-
creased starting from ρ = 92.5 g cm−3 and T = 0 no bound state
can re-appear. There is simply no bound state at higher densities
and/or higher temperatures if it does not exist for T = 0 and a given
density.

Our calculations of the pressure ionization assume that the heavy
elements under considerations are trace elements. Yet, it is of interest
to compare the present method with others. The above results for
metallic beryllium provide such an opportunity. When the specie
under consideration is a trace element, the electrons are contributed
by the hydrogen and helium and there is no connection between
the number of electrons in a unit cell and the charge of the ion.
(There is no condition of charge neutrality per each ion sphere. The
number of electrons in the beryllium ion sphere is not necessarily
four.) In the pure beryllium case, when we search for the density of
complete ionization, we assume that the free electrons are the first
three electrons of beryllium and that the forth one is bound. Thus
the exchange term is evaluated on the basis of beryllium ionized
three times.

As can be deduced from the previous calculation, a critical factor
is the packing of the specie. If spherical packing is assumed, then
the KS equation predicts complete ionization at ρ ≈ 56 g cm−3.
On the other hand, Perrot (1990) quotes that complete ionization
is reached at 92.5 g cm−3. The exact lattice structure of beryllium
at very high densities is not known and Be apparently undergoes a
structural change at a compression ratio of about 3. However, if we
assume an fcc lattice structure and resort to the appendix in Lai et al.
(1991) to find the relation between the lattice structure and the radius
of the atomic cell (ri = (

√
2/4)a) we find complete ionization at a
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Table 2. The effect of treating the Be as fully ionized on the solar neutrino flux.

S(0) in MeV barn Cas97 DS96 RMP98 NACRE DS96S
Spp(0)/10−25 3.89 4.01 4.00 3.94 4.01
S34(0)/10−4 5.10 4.50 4.5 5.40 5.1
S33(0)/100 5.10 5.1 5.1 5.18 5.32
S17(0)/10−6 22.4 17 22.4 21 22.4
Ionization Partial Full Partial Full Partial Full Partial Full Partial Full
φ(8B)/106 cm−2 s−1 5.33 6.36 3.13 3.74 5.19 6.20 5.28 6.30 4.68 5.58
φ(8B)103/φ(7Be) 1.19 1.42 0.783 0.935 1.05 1.25 1.04 1.25 1.094 1.306
Ga (SNU) 133 133 121 121 132 132 137 137 129.5 130.0
Cl (SNU) 7.80 9.14 5.10 5.90 7.65 8.96 7.96 9.29 7.06 8.24

density of 89.3 g cm−3, in good agreement with Perrot (1990). This
result reassures that our analysis for 7Be as a trace element is valid
as well.

5 T H E E F F E C T O F B E F U L L I O N I Z AT I O N O N
T H E S O L A R N E U T R I N O F L U X

When beryllium is completely pressure ionized in the core of the
Sun, electron capture by Be takes place via the continuum only.
Consequently, no corrections to the rate due to bound electrons
should apply.

The effect of the complete ionization of 7Be on the solar neu-
trino flux can be easily estimated without recourse to detailed solar
models because 7Be is a trace element and the amount of energy
released by its reactions is negligible. Two facts are relevant: (i) The
7Be electron capture neutrino flux and the 8B flux are proportional
to the abundance of 7Be. (ii) The rate of electron capture is much
larger than the rate of proton capture (by about 103). Consequently, a
decrease of about 20–30 per cent in the rate of the 7Be + e− capture
increases the abundance of 7Be by the same factor and hence in-
creases the 8B neutrino flux by the same factor. The flux of the 7Be +
e− neutrinos is unchanged because the decrease in the e-capture rate
is fully compensated for by the increase in the abundance. As a mat-
ter of fact, the rate of 7Be + e− is determined (under the condition
that the rate of 7Be + e− is much larger than the rate of 7Be +
p), only by the rate of 3He + 4He. The above treatment of the
pressure ionization of 7Be applies to all solar models irrespective
of any other parameter. The effect on the predicted flux assuming
few different sets of nuclear parameters is shown in Table 2. The
four models referred to in the table are the following. Cas97 refers
to Castellani et al. (1997), DS96 refers to Dar & Shaviv (1996),
RMP98 refers to Adelberger et al. (1998) and NACRE refers to An-
gulo et al. (1999). In the present calculation of the models only the
nuclear cross-section were changed. All other parameters (opacity,
equation of state, diffusion, etc. are identical.

5.1 Comparison with observation

The very detailed comparison between φ(8)B observed and pre-
dicted is more complicated because it depends on the additional
nuclear data, opacity, equation of state, diffusion etc.

If we consider only the 8B neutrino flux (all other neutrino fluxes,
speed of sound, etc. remain fixed), the predicted flux depends on S17,
the plasma screening of the 7Be (p, γ )8B as well as the rate of 7Be +
e capture. The experimental results for the astrophysical S17(0) are
still not definite. The most recent results are: S17(0) eV b = 19+4

−2

Adelberger et al. (1998), 22.3 ± 0.7(expt) ± 0.5(theor) Junghans et
al. (2001), 18.4 ± 1.6 and 18.0 ± 1.8 Motobayashi (2002), 21.2 ±

0.7 Baby et al. (2002), 18.5 ± 2.4 Hammache et al. (2001). We
note that the uncertainty range of Adelberger et al. (1998) covers
the range of the new results. The predicted φ(8B) varies therefore
at least by about 30 per cent, a range that can completely off set the
ionization correction discussed here. As for the nuclear screening
of 7Be(p, γ )8B, temporary results Shaviv & Shaviv (2002) indicate
a smaller screening than the Salpeter one but detailed results will be
available shortly.

Recently, the SNO collaboration published their most up to date
results for φ(8B) production rate, namely including the decay prod-
ucts of the 8B neutrinos. The results are as follows.

Assuming the standard 8B shape, the result is:

φe

/
106 cm−2 s−1 = 1.76+0.05

−0.05(stat.)+0.09
−0.09(syst.)

φµτ

/
106 cm−2 s−1 = 3.41+0.45

−0.45(stat.)+0.48
−0.45(syst.)

φ(8B)
/

106 cm−2 s−1 = φe + φµτ = 5.17+0.67
−0.67

When the SuperKamiokanda result for the 8B

φSK
ES /106 cm−2 s−1 = 2.32 ± 0.03(stat.)+0.08

−0.07(syst.)

is added, the result for φµτ becomes 3.45+0.65
−0.62, so that (SNO collab-

oration 2002)

φ(8B)
/

106 cm−2 s−1 = 5.21+0.66
−0.62 .

Removing the constraint that the solar neutrino energy spectrum is
undistorted, the total flux of active 8B becomes

φSNO
/

106 cm−2 s−1 = 6.42+1.57
−1.57(stat.)+0.55

−0.57(syst.) .

This observational results should be compared with the prediction
of the stellar evolution of the Sun.

From Table 2 it appears that the very low S17 value (like the one
assumed in the model DS96) appears to have low probability. On
the other hand, all other models with full 7Be ionization predict
the experimental results to with in the quoted error. The neutrino
oscillation solution agrees with the solar models within the range of
the uncertainly in the nuclear data. Lastly, we changed the value of
S17 and S33 in the DS96 model (and marked it as DS96S). The value
S33 = 5.32 MeV b is taken from The LUNA collaboration (1999).
The results are shown in the last column and we see how sensitive
the result is to these two cross sections.

6 C O N C L U S I O N – T H E S TAT E
O F B E RY L L I U M I N T H E S U N

In this work, we were interested in the internal structure of a trace
ion in a high density plasma, and not in the general properties of
the plasma. The relevant physical quantity for the latter is the ef-
fective charge of an ion – not the electronic structure, provided the
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effective radius of the electronic wavefunction is much smaller than
the Debye radius. As to the structure of the ion itself, we distin-
guished between two cases depending on whether the mean inter-
particle distance is smaller or larger than the Debye radius. We found
that throughout most of the Sun, the mean interparticle distance is
slightly smaller than the Debye radius. The Sun happens to be very
close to the order line. In low-mass main-sequence stars, RD � 〈r〉.

Under such conditions, the ionization state of a given ion de-
pends mostly on the distance to the nearest neighbour rather than
the distance scale of the screened potential. Hence, we approximate
the condition of the plasma with a generalized Wigner–Seitz cell
around each ion plus the proper boundary condition on the surface
of the cell. We then impose the Bloch condition on the boundary of
the generalized Wigner–Seitz cell. The fact that the nearest neigh-
bour is so close implies that the implementation of this condition
has a major effect on the point at which complete ionization takes
place.

We have calculated the critical density of complete ionization
assuming at first the Schrödinger equation and a Coulomb potential.
Next, we implemented the Kohn–Sham equation, which takes into
account the exchange interaction due to the free electrons and the
screening by them. Comparison of our results with the NPA method
yields a very good agreement for the case of metallic beryllium.

We mention that when the boundary condition implemented in
the KS equation is ψ(r → ∞) = 0, the phenomenon of pressure
ionization disappears.

The improvements in the treatment of pressure ionization of trace
elements show that all species with Z � 8 are fully ionized in the
core of the Sun. (The critical density for oxygen is a bit higher than
the density in the core of the Sun but the high temperature secure the
complete ionization of oxygen). The frequently applied correction to
the 7Be electron capture rate due to bound electrons, is not needed.
The revised prediction for the φν(8B) from the Sun is higher by
about 20–30 per cent. The agreement between the predictions of the
standard solar model (assuming the standard set of nuclear cross
sections) and the SNO result for the 8B neutrino flux is improved.

The discussion here was centred around the high density effects.
However, one should take into account collective effects as well
(cf. Murillo & Weisheit 1998). The energy of the electron plasma
oscillations is

h- ωe = 3.7 × 10−11√ne eV. (16)

At an electron number density of 1026 the energy of the plasma
oscillations amounts to 370 eV which is higher than the ionization
potential of 7Be. Thus the bound states of 7Be have been broadened
into continuum states long before.
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