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We discuss microscopic cluster model descriptions of two solar nuclear reac-
tions, 7Be(p, γ)8B and 3He(3He, 2p)4He. The low-energy reaction cross section of
7Be(p, γ)8B, which determines the high-energy solar neutrino flux, is constrained
by 7Be and 8B observables. Our results show that a small value of the zero-
energy cross section is rather unlikely. In 3He(3He, 2p)4He we study the effects of
a possible virtual state on the cross section. Although, we have found no indica-
tion for such a state so far, its existence cannot be ruled out yet. We calculate
the 3He(3He, 2p)4He and 3H(3H, 2n)4He cross sections in a continuum-discretized
coupled channel approximation, and find a good general agreement with the data.

1 Introduction

One of the most exciting fields of research these days is neutrino physics.
Various experiments have been producing a large number of interesting results
about the neutrino, yet after decades of work we still do not know even the most
basic properties of these particles. The pioneering experiments that measure
neutrinos coming from the sun produced the first, and still strongest, evidence
for the possibility of nonzero neutrino mass, and hence for physics beyond the
standard model. For a review of solar neutrino research, see 1.

Solar models contain input parameters from many fields of physics. For
any reliable prediction of the solar neutrino fluxes, these parameters must be
firmly established. Nuclear physics provides the rates of solar fusion reactions
as input parameters for solar models. For a very recent review of our current
understanding of these reactions, see 2. In the following we shall discuss a
microscopic model description of two important solar reactions, 7Be(p, γ)8B
and 3He(3He, 2p)4He, in detail.

2 Model and computational details

Currently the best dynamical description of A = 6 − 8 nuclei can be achieved
by the microscopic cluster model. This model assumes that the nuclei consist
of 2 − 3 clusters. While the clusters are described by simple harmonic oscil-
lator shell-model wave functions, the intercluster relative motions, which are
the most important degrees of freedom, are treated rigorously. This model
satisfies the correct bound- and scattering asymptotics of the wave functions,
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and satisfactorily reproduces the positions of the important breakup- and re-
arrangement channel thresholds and separation energies.

Because of the low temperature of our sun (on nuclear scales) the most
effective energies for solar reactions are very low, being in the keV region.
Thus, in order to calculate charged-particle reaction cross sections reliably,
one must use computational methods which can supply correct bound- and
scattering wave functions up to a few hundred fermi radii with high precision.
Here we use the Kohn-Hulthén variational method for scattering states 3 and
the Siegert variational method for bound states 4. We briefly discuss these
methods in a simplified manner, the generalization for realistic calculations is
straightforward.

The Kohn-Hulthén method starts with the following trial wave function

Ψt =

N∑

i=1

ciϕi + φ−E − S(E)φ+

E . (1)

Here ϕi are square-integrable functions (Gaussians in our case) while φ−E and
φ+

E are incoming and outgoing Coulomb functions with energy E, respectively.

From the 〈 δΨt | Ĥ − E | Ψt 〉 = 0 projection equation one gets a set of linear
equations that can be solved for the ci coefficients and the S scattering matrix.
For many-body systems one can use basis functions that are made by matching
ϕi with the Coulomb functions in the external regions. This way all many-
body matrix elements can be reduced to analytic forms plus one-dimensional
integrals 3.

The Siegert variational method uses a trial function with purely outgoing
asymptotics:

Ψt =

N∑

i=1

ciϕi + cN+1φ
+. (2)

After the variation one arrives at a set of linear equations which is underde-
termined (with N + 2 unknowns: c1, c2, . . . , cN+1, E). It has solutions, the
bound states, only at discrete energies, where the determinant of the system
of equations is zero. A matching technique similar to the scattering case can
be used to calculate all matrix elements analytically. Using the resulting wave
functions the reaction cross sections can be calculated. In order to get rid of
the trivial exponential energy dependence of the cross sections, which comes
from the Coulomb barrier penetration, we use the astrophysical S-factor

S(E) = σ(E)E exp
[
2πη(E)

]
, η(E) =

µZ1Z2e
2

kh̄2
. (3)
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The model and methods described above have been used to study the
7Be(p, γ)8B and 3He(3He, 2p)4He solar reactions in 4He + 3He + p and {3He +
3He, 4He + p + p} cluster models, respectively.

3 7Be(p, γ)8B cross section constrained by A=7 and 8 observables

The most uncertain nuclear input parameter in standard solar models is the
low-energy 7Be(p, γ)8B radiative capture cross section. This reaction produces
8B in the sun, whose β+ decay is the main source of the high-energy solar neu-
trinos. Many present and future solar neutrino detectors are sensitive mainly
or exclusively to the 8B neutrinos. The predicted 8B neutrino flux is linearly
proportional to S17, the 7Be(p, γ)8B astrophysical S factor at solar energies
(Ecm = 20 keV). Thus, the value of S17(20 keV) is a crucial input parameter
in solar models. The six radiative capture measurements performed to date
give, after extrapolations from higher energies, S17(0) between 15 eVb and
40 eVb, with a weighted average of 22.4 ± 2.1 eVb 5, while a recent Coulomb
dissociation measurement gives S17(0) = 16.7 ± 3.2 eVb 6. The theoretical
predictions for S17(0) also have a huge uncertainty, as the various models give
values between 16 eVb and 30 eVb.

The low solar energies mean that the reaction takes place well below the
Coulomb barrier. In such cases the radiative capture cross section gets con-
tributions almost exclusively from the external nuclear regions (r > 6 − 8
fm). At such distances the scattering- (7Be + p) and bound state (8B) wave
functions are fully determined, provided the scattering phase shifts and bound
state asymptotic normalizations are known7. At solar energies the phase shifts
coincide with the (almost zero) hard sphere phase shifts, while the bound state
wave function in the external region behaves like c̄W+(kr)/r, where W+ is the
Whittaker function and c̄ is the asymptotic normalization. So the only un-
known parameter that governs the 7Be(p, γ)8B reaction at low energies is the c̄
value. The c̄ normalization depends mainly on the effective 7Be–p interaction
radius. A larger radius results in a lower Coulomb barrier, which leads to a
higher tunneling probability into the external region, and hence to a higher
cross section. We believe that the best way to constrain the potential radius
is to study some key properties of the A = 7 and 8 nuclei 8. The observables
that are most sensitive to the interaction radius are “size” type properties, for
example, quadrupole moment, radius, Coulomb displacement energy 9, etc.

We use an eight-body three-cluster model which is variationally converged
and virtually complete in the 4He+3He+p cluster model space10. We find that
the low-energy astrophysical S factor is linearly correlated with the quadrupole
moment of 7Be (Fig. 1). This quantity, Q7, has not been measured yet, but
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Figure 1: Correlation between the zero-energy astrophysical S factor of the 7Be(p, γ)8B
reaction and the quadrupole moment of 7Be in our microscopic eight-body model. The
results of several calculations, using various N−N interactions and model spaces, are shown.
Within one model space and interaction, the different results come from different cluster sizes.
The numbers in Fig. (a) are the calculated 8B point-nucleon radii (in fm), while in Fig. (b)
they are the r2(8B)− r2(7Be) values (in fm2) for the various models. The phenomenological
values are r(8B) = 2.50 ± 0.04 fm and r2(8B) − r2(7Be) ≈ 0.9 fm2.

the model itself predicts it to be between −6 e fm2 and −7 e fm2. In addition
to the Q7 dependence, there is a sensitivity of S17(0) on the employed N −N
interaction, as shown in Fig. 1. We found that the MN interaction is the most
self-consistent in describing the A = 7 and 8 nuclei and the N + N systems.
Thus, our model predicts S17(0) = 25 − 26.5 eVb. We mention, however, that
the construction and use of other high-quality effective N − N interactions
would be desirable in order to check our findings.

We have also tested how our model reproduces other “size” observables
11. The quantity that is most sensitive to the effective 7Be − p interaction
radius is r2(8B) − r2(7Be). However, a precise experimental determination of
this quantity is very difficult. Originally the 7Be and 8B radii were determined
from interaction cross sections by using Glauber-type models with uniform
density distributions for the nuclei 12. Recently a more precise 8B radius was
extracted from interaction cross section data by taking into account the 7Be+p
nature of 8B 13. The resulting point-nucleon radius is r(8B) = 2.50 ± 0.04 fm,
and hence r2(8B)− r2(7Be) ≈ 0.9 fm2. The model still uses the Glauber result
for the 7Be radius. A few-body 4He + 3He description of 7Be would probably
slightly increase r(7Be) and consequently r(8B).

In Fig. 1 we give the 8B radii and r2(8B) − r2(7Be), calculated for the
various model spaces, interactions, etc. It appears from Fig. 1(a) that the
phenomenological r(8B) value would suggest a ≈10% reduction in S17(0) rel-
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Figure 2: Astrophysical S factor for the 7Be(p, γ)8B reaction in our eight-body model.
The symbols show the various experimental data (see 14 for references). The solid and
long-dashed lines are the E1 components of the S factors in our model with and without
antisymmetrization in the electromagnetic transition matrix, respectively. The short-dashed
line is the result of a typical potential model 7.

ative to our MN prediction. However, it is interesting to note that increasing
the model space (open circles) reduces the calculated r(8B) at a given Q7.
If further model-space extensions resulted in the same behavior, then once
again our MN results would be the most self-consistent. Fig. 1(b) shows that
r2(8B) − r2(7Be) seems to be already too small for both the MN and MHN
interactions. Model-space extensions bring the MN results toward the phe-
nomenological value. The 8Li−8B Coulomb displacement energy shows similar
behavior to the observables in Fig. 1 11.

While the zero-energy cross section is sensitive only to the asymptotic
parts of the wave functions, with increasing energy the internal wave functions
become more and more important. The internal wave functions are sensitive
to effects like the exchange of the incoming proton with a proton in 7Be, the
excitation of the 7Be core by the incoming proton, 7Be deformations, etc. The
influence of these off-shell effects on S(E) was studied in our eight-body model
14. We took the 7Be−p relative motion wave functions coming from the cluster
model, and used them as if they came from a potential model. This way the
antisymmetrization, which is the biggest off-shell effect, was neglected in the
electromagnetic transition matrix. One can see in Fig. 2 that the resulting S
factor (long dashed line) has quite different energy dependence than the full
microscopic S factor (solid line). We also show an S factor coming from a
potential model (short dashed line). This calculation demonstrates that there
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are strong off-shell effects present in 7Be(p, γ)8B, which have to be taken into
account for any reliable extrapolation of high-energy measurements.

All existing microscopic calculations for 7Be(p, γ)8B use effective N − N
interactions with Gaussian shape. One can argue that using potentials with
the correct Yukawa asymptotics would change S(0). We studied this problem
by using the MN interaction with Gaussian shape matched with a Yukawa
tail 11. We found that in the perturbative regime, where such a study makes
sense, S(0) is insensitive to the Yukawa tail, although the A = 7 and 8 binding
energies change significantly, and the overall strengths of the potentials have
to be refitted.

Another interesting question is the effect of further extensions in the model
space by including, for example, 6Li+ p+ p and other configurations in 8B. As
an exploratory investigation, we studied the effects of 6Li+N on 7Li and 7Be11.
An interesting result is that while 7Li is not affected by the 6Li + n channel,
some 7Be properties, like the quadrupole moment, is strongly influenced by
6Li + p. We observe a slight change also in the energy dependence of the
4He(3He, γ)7Be S factor if 6Li + p is included. Further studies are in progress.

4 The 3He(3He,2p)4He reaction

The 3He(3He, 2p)4He reaction competes with the 7Be producing branch of the
solar p-p chain 1. Thus, it indirectly affects the 7Be and 8B neutrino fluxes.
There are two interesting problems related to this reaction: i) a possible low-
energy resonance in the cross section would suppress the high-energy solar
neutrino fluxes 15; ii) this is the only solar reaction whose cross section has
been measured down to solar energies, and the effect of electron screening is
still not fully understood 16. We studied these problems in a six-body {3He +
3He, 4He + p + p} cluster model 17.

If there is a resonance in the 3He(3He, 2p)4He reaction cross section, then
it comes from either 3He + 3He or 4He + p + p. Interestingly, the second case
is easier to study despite its three-body nature. We searched for high-lying
narrow resonances in 4He + p + p using the complex scaling method that can
handle the three-body Coulomb asymptotics correctly 18,17. We found no such
states. The 3He + 3He channel is more difficult and more interesting. We
mention here only one interesting feature. The 3He + 3He system is similar
in many respects to the n + n system, which has a virtual 0+ state with
negative energy and negative imaginary wave number. If there is a virtual
state present in 3He + 3He then it would result in a 3He(3He, 2p)4He cross
section that is singular at the (unphysical) negative 3He + 3He pole energy,
and has a 1/E energy dependence at low positive energies. We show the effect
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Figure 3: Astrophysical S factor for the 3He(3He, 2p)4He reaction. The data points are from
16 and references therein. The solid line is the fitted raw cross section, while the long dashed
line is the bare cross section, determined by removing the electron screening effect with
U = 323 eV screening potential. The short dashed line shows the effect of a hypothetical
zero-energy virtual state on the bare cross section. The strength of the virtual state is
artificially set to 5 keV.

of such a hypothetical state in Fig. 3. The observed rise in the measured cross
section (relative to the bare cross section) is attributed to the effect of electron
screening. One can see that a virtual state could mimic a similar behavior. We
have searched for virtual states in 3He + 3He in a simple cluster model, and
found none so far. Further studies in a more realistic model are in progress 17.

The understanding of the energy dependence of the cross section is also
important for the study of electron screening effects. The screening potential,
extracted in 16, seems to be larger than predicted by theory. We studied the
3He(3He, 2p)4He and the mirror 3H(3H, 2n)4He reactions in large-space cluster
models in the continuum discretized coupled channel approximation 17. The
results are in Fig. 5. We observe a good general agreement with the data in
both the absolute normalization and shape. However, a marked disagreement
exists at very low energies in 3H(3H, 2n)4He between our result and the very
precise Los Alamos data. Further investigation to understand this discrepancy
is in progress.

5 Conclusion

We have studied the 7Be(p, γ)8B, and 3He(3He, 2p)4He solar nuclear reactions
in microscopic cluster models.
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Figure 4: Astrophysical S factor for the (a) 3H(3H, 2n)4He and (b) 3He(3He, 2p)4He reac-
tions. In Fig. (b) only the data of Krauss are shown (cf. 16). The curves come from our
six-body calculations in a continuum discretized coupled channel approximation.

Our S17(0) = 25− 26.5 eVb astrophysical S factor is slightly higher than,
but consistent with the value 5 22.4± 2.1 eVb currently used in standard solar
models. Our results show that certain 7Be and 8B observables, like radius and
quadrupole moment, can establish a region of the possible values of S17(0).
Our model shows that a small value of S17(0) is rather unlikely, unless some
very important ingredient is missing in our approach. Currently we have no
candidate for such a missing element. We would like to emphasize the need
for further experiments by using both the radiative capture technique 19 and
Coulomb dissociation 20. A measurement of the 7Be quadrupole moment and
a precise extraction of the 7Be radius would also be very beneficial.

Our calculations for 3He(3He, 2p)4He show no resonances or virtual states
either in the 3He+ 3He or in the 4He+p+p channels. Further studies of 3He+
3He in more realistic models are necessary. We calculated the 3He(3He, 2p)4He
and 3H(3H, 2n)4He cross sections and found a good general agreement with
existing data.

Solar model independent analyses show that the measured solar neutrino
rates cannot be reproduced by arbitrarily changing the normalizations of the
neutrino spectra21 (the shapes of the spectra are currently beyond any doubt).
Thus, the solar fusion rates themselves, which can change only the absolute
normalizations of the fluxes, cannot solve the solar neutrino problem. In fact
we have more efficient ways within the standard model to change the absolute
normalizations, than nuclear physics. For instance, by slightly deviating from
the Maxwell-Boltzmann thermal statistics one can cause as large changes in
the various neutrino fluxes as those that constitute the solar neutrino problem
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itself 22. However, in order to have a solution of the solar neutrino problem
within the standard model, we would still need a yet unknown mechanism
that could cause spectrum distortion, like the MSW neutrino oscillation in a
non-standard model 1.
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