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Quadrupole theory and design are based on the solution of Mathieu’s equations, which assume that
zero potential, except for the symmetry axes between the electrodes, is infinitely far away. In
practice, the quadrupole rods are mounted within a grounded housing not much larger than the
electrode structure itself. This study determines the operating parameters and optimum electrode
size for a quadrupole with electrodes of circular cross section located within a zero-potential
cylindrical surface. It is found that the rod size is only weakly dependent on the location of the
external, zero-potential surface and the optimum rod size is »=1.14687, for a cylinder radius of
3.54r0. Although the optimum rod size is only 1.159, smaller than the commonly used value of
r=1.16ry, it is found that 439, higher sensitivity at a resolution of 400 (AM measured at half-

height) results from using the optimum radius electrodes.

Introduction

The quadrupole mass analyzer, first described by
Paul and Steinwedel' in 1953, and subsequently dis-
cussed by many authors, consists ideally of hyperbolic
electrodes of infinite extent with zero-potential lines
existing along the asymptotes of the hyperbolas.
When the possibility of replacing the hyperbolic elec-
trodes by electrodes of circular cross section was
presented by Dayton et al.2 while studying the mag-
netic quadrupole, zero potential (magnetostatic) ex-
isted along the lines equidistant from pairs of elec-
trodes and at infinite distance from the electrode
structure. This technique was adopted by Paul,
Reinhard, and von Zahn? for the electrostatic quadru-
pole and zero potential was treated as being infinitely
far from the quadrupole (except for the symmetry
axes). In reality, the quadrupole structure is operated
within a vacuum chamber which is normally metallic
and at ground potential. This paper presents data on
the operating parameters of a quadrupole with cir-
cular cross-section electrodes in a grounded cylindrical
housing. Dayton empirically determined the optimum
radius of the circular electrodes to be r=1.148,,
where 27, is the spacing between diametrically opposite
electrodes. Curiously, the paper by Paul, Reinhard,
and von Zahn® misquoted Dayton by using »=1.167,.
Even more curious, later authors have used the mis-
quote while referencing the work of Dayton.

* Some of the computer techniques used in this study were
developed while the author was at Granville-Phillips Co.

Optimization of Electrode Size

‘The potential distribution in a quadrupole with
circular crossection electrodes cannot be explicitly
written, but can be expressed as an infinite series.

o= {(U~+V coswt) 3 C,(r/re)™ cosmb, (1)

which is a multipole expansion and is a solution to
Laplace's equation
V2 =0. (2)

Here U is the applied dc voltage and V coswt is the
applied rf voltage. The symmetry of the potential
requires that the potential change sign when 8 changes
by #/2. Thus

cosmr/2=—1, (3)
which implies m =2, 6, 10, 14, -- -, or
o ¥ 2(2n+1)
¢={(U~+V coswt) > Cn<——> cos[2(2n-+1)07]. (4)
n=0 Yo

The first term is the quadrupole term, the second is a
12-pole term, the third is a 20-pole term, etc. The 12-
pole term is the next largest term in most of the
central region and thus the best approximation to a
pure quadrupole potential is an electrode radius such
that C;=0. The technique of determining the values
of the coefficients, C,, as a function of electrode radius
is as follows:

(1) The Liebmann technique?! is used with a digital
computer to compute numerically the potential dis-
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tribution at a large number of equally spaced points
within the electrode structure. Figure 1 shows a series
of equipotentials for one quadrant of the electrode
structure.

(2) For values of the potential at these points
within a circle of radius 7y centered within the quadru-
pole structure, the radius » and angle 8 of each point
are used to obtain simultaneous equations for the C,.

(3) A finite number of C’s are evaluated by a
least-squares fit of Eq. (4) to the data points. The
number of C’s evaluated was increased until no change
was observed in the first five coefficients. This oc-
curred with 12 terms. Thus, 12 coefficients were ob-
tained by a least-squares fit to about 250 points.
Figure 2 gives C; as a function of /7, for two cases:
ground at infinity and ground at R=3.54r, (the
smallest practical cylinder radius). As the zero-poten-
tial surface decreases in radius, the optimum electrode
radius increases. In the case of the round-rod quad-
rupole, the change in rod radius is very small except
for large 7, instruments.

Equation (4) can be differentiated to give the equa-
tions of motion which can be numerically integrated
to give ion trajectories. A number of interesting points
come to light when this is done. The equations of
motion can be written in rectangular coordinates:

2n+1xt+y3\ 2"
dx/dmt=— (at+qcost) Y. Cy < >

To
X{x cos[2(2n+1)6]+y sin[2(2rn+1)8]}, (5)

2n+1 /x4y
dry/dr*= — (a+qcost) T C,rA4 < >

7o
X{y cos[2(2n+1)8]—x sin[2(2n+1)6]}, (6)

where a=8eU/muw?, gq=4eV/mo?red, t=wt, and
6=tan™'(y/x), as in the usual quadrupole parametric
notation. It is a simple exercise to show that the
quadrupole term (z=0) for each equation is depen-
dent on a single coordinate rather than both x and y.
However, higher multipole terms are x and y depen-
dent. Thus, in a quadrupole structure with circular
electrodes, the components of the ion motion in the
x and y directions are not completely independent but
are weakly coupled through the nonquadrupole field
components.

As in the case of the pure quadrupole, these equa-
tions of motion result in bounded ion trajectories for
only certain values of ¢ and ¢. The ¢ and ¢ parameters
for stable orbits can be obtained by numerical inte-
gration, and one obtains the corresponding stability
diagram. The stability diagram obtained is similar
to the a—¢ diagram for the hyperbolic electrode
quadrupole in the geometric sense; i.e., the two sta-
bility diagrams, when normalized, are identical point
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F1GURE 1. QOne quadrant of the potential distribution in a
quadrupole with circular cross-section electrodes within a cylinder
at zero potential.

for point. As can be seen in Fig. 3, the stability
diagram for the circular electrode quadrupole is dis-
placed toward higher values of ¢ and ¢g. The particular
diagram shown is for a structure as Fig. 1 with the
grounded surface at R=3.54r, and »=1.1468r,, which
gives C;=0. For comparison, the stability diagram of
a r=1.16r, structure is shown. The location of the
stability diagrams shows the »=1.1468r, structure to
be a better approximation to the pure quadrupole.

Effect of Operating Parameters

The change in electrode radius from 1.167, to
1.14687, is only 1.159], but what is the effect on the

@=0 AT 3.54R,

<« 2f 11468
2 i
x O
O»2- 11460
-4}
r ®:0 AT 4
-6} ]
b
.8.
-10
113 1135 114 1145 15 1155 16
R/Ro

FIGURE 2. Variation of the coefficient of the 12-pole potential
term with electrode radius.
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quadrupole performance? Brubaker® showed that a
*‘critical radius’”’ exists beyond which an ion could
not penetrate without colliding with an electrode, and
the usable field radius in a quadrupole with 1.167¢
radius electrode is only 829, of the geometric radius
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quadrupole had only 679 of the available crossection
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ro. At a resolution of 400 the available cross section
has decreased to only 459, of the hyperbolic structure.
Figure 4 shows the envelope of ¥y motion for input
conditions that result in unstable trajectories at reso-
lutions of 100 and 400 in a »=1.1468r, circular elec-
trode structure. The instability boundary occurs at
0.86r, and 0.807,, respectively. Thus, at a resolution
of 100 the available cross section has increased by
10.09, and at a resolution of 400, the available cross
section has increased by 42.69, over that of a structure
with r=1.16ro. The important thing here is that the
effective cross section of the analyzer decreases less
rapidly for the 1.1468-r¢ instrument than for the
1.16-7, device as the resolution is increased. It would
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entrance conditions for injecting the ions into the
analyzer, the sensitivity of the 1,1468-r, rod analyzer
should be less dependent on increasing resolution than
the commonly used 1.16-7¢ rod analyzer.

The effect of the change in electrode size on voltage
requirement is seen from the stability diagrams to be
less than 19, and is, therefore, of little practical
concern. A given mass appears at a different voltage
than predicted by the stability diagram of the hy-
perbolic electrode quadrupole but the difference is
small and rarely is the applied voltage used as a peak
identification criterion.

.239 T T T T T v T

238 | R 116R, _

A

V74
// N\
/N

YA \ VIR

[O)

I

233

700 704 708 712 716
q
FIGURE 3. Location of the tips of the stability diagrams of a

hyperbolic electrode quadrupole and circular electrode quadru-
poles with rod radii of 1.14687¢ and 1.167¢.
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FIGURE 4. Envelopes of y-component motion of an ion in the
field of a quadrupole with circular cross-section electrodes show-
ing the “critical radius” for resolutions of 100 and 400. The
radius of the electrodes is r =1.14687,.

Although the improvement in sensitivity is marked,
there is no practical improvement in resolution. In
practice, the resolution is limited by mechanical con-
struction or electronic-circuit limitations to values
lower than the theoretically achievable values even
for r=1.16r,. However, Dawson and Whetten® have
shown theoretically that the sixth-order component
to the potential (12 pole) can result in a blunted tip
on the stability diagram and hence constitutes a
limitation to the theoretically achievable resolution.
The elimination of the sixth-order component thus
may result in some Lueoreucauy 1mpi‘OV€u resolu LIOﬁ,

but this requires further study.

From a nractical noint of view. the conse
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of rod-radius optimization are even more p ronounced.
Paul et al.® showed that the power essar

e po

a hyperbolic electrode quadrupole is

W=06.5X10"*CM?f5r4/Q, )
where C is the quadrupole capacitance in pf, M is the
ion mass, f is the radio frequency in MHz, and Q is
the circuit quality factor. The relationship, except for
the constant, is the same for round-rod quadrupoles.
For a resolution of 400 and the same sensitivity, a
quadrupole with 1.1468r, rods would have 83.759, of
the electrode spacing of a 1.167, rod quadrupole. Thus,
the power necessary to drive the 1.14687, rod radius
quadrupole is less than half that necessary to drive
the 1. 1Ul() rod 1ad1us instrument with the safmie sensi-

tivity at a resolutlon of 400. This difference increases

with incre
witil 1INCre.

Conclusion

It is found from the computer study that the as-

sumntion that zero nnfpnhnl s 1nﬁn1fplv far from a

quadrupole structure with circular electrodes is not



seriously in error. This probably results from the fact
that the electrode radius for optimum fit to a quadru-
pole field is sufficiently large that the central region,
where mass separation takes place, is not strongly
influenced by external zero potential. The result
might be different if the quadrupole were located in
a high potential region with its center at zero poten-
tial, but this is not a common occurrence.

The sensitivity of a quadrupole with circular cross-
section electrodes is strongly dependent on the ratio
of electrode radius to electrode spacing. The current
use of r=1.16r, for rod radius appears to penalize
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unnecessarily the performance of the circular elec-
trode quadrupole. A better value for the rod radius
would be a 1.1477y, which yields either higher sensi-
tivity or a lower driving-power requirement.
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Improved Method of the Resolution for

Quadrupole Mass Spectrometers
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Resolution mode of quadrupole mass filter is well represented by mass scan line on stability dia-
gram. All mass peaks just disappear on the cutoff scan line which passes through the origin and to
the apex of the stability diagram. When a scan line is shifted downward by a small amount parallel
to the cutoff scan line, it can be expected theoretically that all mass peaks give a constant peak
width independent of mass. Adjustment of resolution is carried out based on this theory. As the
peak height is proportional to the peak width, a mass spectrum obtained experimentally with this
mode of operation gives a constant pattern coefficient in adjusting the resolution.
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